Skip to main content

A Computational Model of the Amygdala Nuclei’s Role in Second Order Conditioning

  • Conference paper
From Animals to Animats 10 (SAB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5040))

Included in the following conference series:

Abstract

The mechanisms underlying learning in classical conditioning experiments play a key role in many learning processes of real organisms. This paper presents a novel computational model that incorporates a biologically plausible hypothesis on the functions that the main nuclei of the amygdala might play in first and second order classical conditioning tasks. The model proposes that in these experiments the first and second order conditioned stimuli (CS) are associated both (a) with the unconditioned stimuli (US) within the basolateral amygdala (BLA), and (b) directly with the unconditioned responses (UR) through the connections linking the lateral amygdala (LA) to the central nucleus of amygdala (CeA). The model, embodied in a simulated robotic rat, is validated by reproducing the results of first and second order conditioning experiments of both sham-lesioned and BLA-lesioned real rats.

This research was supported by the EU Project ICEA - Integrating Cognition, Emotion and Autonomy, contract no. FP6-IST-IP-027819.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pavlov, I.P.: Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Oxford University Press, Oxford (1927)

    Google Scholar 

  2. Lieberman, D.A.: Learning, behaviour and cognition. Brooks/Cole (1993)

    Google Scholar 

  3. Schultz, W., Dayan, P., Montague, P.: A neural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    Article  Google Scholar 

  4. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  5. Dayan, P., Balleine, B.: Reward, motivation and reinforcement learning. Neuron 36, 285–298 (2002)

    Article  Google Scholar 

  6. O’Reilly, R.C., Frank, M.J., Hazy, T.E., Watz, B.: PVLV: the primary value and learned value Pavlovian learning algorithm. Behav. Neurosci. 121(1), 31–49 (2007)

    Article  Google Scholar 

  7. Hull, C.L.: Principles of behavior. Appleton-century-crofts (1943)

    Google Scholar 

  8. Cardinal, R., Parkinson, J., Hall, J., Everitt, B.: Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Behav. Cogn. Neurosci. Rev. 26(3), 321–352 (2002)

    Google Scholar 

  9. Balkenius, C., Morèn, J.: Dynamics of a classical conditioning model. Auton. Robot. 7(1), 41–56 (1999)

    Article  Google Scholar 

  10. Morèn, J., Balkenius, C.: A computational model of emotional learning in the amygdala. In: Meyer, J.A., Berthoz, A., Floreano, D., Roitblat, H.L., Wilson, S.W. (eds.) From Animals to Animats 6: Proceedings of the 6th International Conference on the Simulation of Adaptive Behaviour. The MIT Press, Cambridge (2000)

    Google Scholar 

  11. Thompson, R.F., Swain, R., Clark, R., Shinkman, P.: Intracerebellar conditioning–Brogden and Gantt revisited. Behav. Brain Res. 110(1-2), 3–11 (2000)

    Article  Google Scholar 

  12. Hatfield, T., Han, J.S., Conley, M., Gallagher, M., Holland, P.: Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J. Neurosci. 16(16), 5256–5265 (1996)

    Google Scholar 

  13. Pitkänen, A., Jolkkonen, E., Kemppainen, S.: Anatomic heterogeneity of the rat amygdaloid complex. Folia Morphol. 59(1), 1–23 (2000)

    Google Scholar 

  14. Phelps, E.A., LeDoux, J.E.: Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48(2), 175–187 (2005)

    Article  Google Scholar 

  15. Rosen, J.B.: The neurobiology of conditioned and unconditioned fear: a neurobehavioral system analysis of the amygdala. Behav. Cogn. Neurosci. Rev. 3(1), 23–41 (2004)

    Article  Google Scholar 

  16. Fudge, J.L., Emiliano, A.B.: The extended amygdala and the dopamine system: another piece of the dopamine puzzle. J. Neuropsych. Clin. N. 15(3), 306–316 (2003)

    Google Scholar 

  17. LaLumiere, R.T., Nawar, E.M., McGaugh, J.L.: Modulation of memory consolidation by the basolateral amygdala or nucleus accumbens shell requires concurrent dopamine receptor activation in both brain regions. Learn. Memory 12(3), 296–301 (2005)

    Article  Google Scholar 

  18. Berridge, C.W., Waterhouse, B.D.: The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. 42(1), 33–84 (2003)

    Article  Google Scholar 

  19. Rolls, E.T.: Prećis of The brain and emotion. Behav. Brain Sci. 23(2), 177–191 (2000); discussion 192–233

    Article  Google Scholar 

  20. Saddoris, M.P., Gallagher, M., Schoenbaum, G.: Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron 46(2), 321–331 (2005)

    Article  Google Scholar 

  21. Mannella, F., Mirolli, M., Baldassarre, G.: The role of amygdala in devaluation: a model tested with a simulated robot. In: Berthouze, L., Prince, C.G., Littman, M., Kozima, H., Balkenius, C. (eds.) Proceedings of the Seventh International Conference on Epigenetic Robotics, Lund University Cognitive Studies, pp. 77–84 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Minoru Asada John C. T. Hallam Jean-Arcady Meyer Jun Tani

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mannella, F., Zappacosta, S., Mirolli, M., Baldassarre, G. (2008). A Computational Model of the Amygdala Nuclei’s Role in Second Order Conditioning. In: Asada, M., Hallam, J.C.T., Meyer, JA., Tani, J. (eds) From Animals to Animats 10. SAB 2008. Lecture Notes in Computer Science(), vol 5040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69134-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69134-1_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69133-4

  • Online ISBN: 978-3-540-69134-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics