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Abstract. A phenomenological model is developed where complex dy-
namics are the correlate of spatio-temporal memories. If resting is not
a classical fixed point attractor but a Milnor attractor, multiple oscilla-
tions appear in the dynamics of a coupled system. This model can be
helpful for describing brain activity in terms of well classified dynamics
and for implementing human-like real-time computation.

1 Introduction

Neuronal collective activities of the brain are widely characterized by oscillations
in human and animals [1][2]. Among various frequency bands, distant synchro-
nization in theta rhythms (4-8 Hz oscillation defined in human EEG) is recently
known to relate with working memory, a short-term memory for central execu-
tion in human scalp EEG [3][4] and in neural firing in monkeys [5][6].

For long-term memory, information coding is mediated by synaptic plasticity
whereas short-term memory is stored in neural activities [7]. Recent neuroscience
reported various types of persistent activities of a single neuron and a population
of neurons as possible mechanisms of working memory. Among those, bistable
states, up- and down-states, of the membrane potential and its flip-flop tran-
sitions were measured in a number of cortical and subcortical neurons. The
up-state, characterized by frequent firing, shows stability for seconds or more
due to network interactions [8]. However it is little known whether flip-flop tran-
sition and distant synchronization work together or what kind of processings are
enabled by the flip-flop oscillation network.

Associative memory network with flip-flop change was proposed for working
memory with classical rate coding view [9], while further consideration on dy-
namical linking property based on firing oscillation, such as synchronization of
theta rhythms referred above, is likely essential for elucidation of multiple at-
tractor systems. Besides, Milnor extended the concept of attractors to invariant
sets with Lyapunov unstability, which has been of interest in physical, chemical
and biological systems. It might allow high freedom in spontaneous switching
among semi-stable states [12]. In this paper, we propose a model of oscillation
associative memory with flip-flop change for working memory. We found that
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the Milnor attractor condition is satisfied in the resting state of the model. We
will first study how the Milnor attractor appears and will then show possible
behaviors of coupled units in the Milnor attractor condition.

2 A Network Model

2.1 Structure

In order to realize up- and down-states where up-state is associated with oscil-
lation, phenomenological models are joined. Traditionally, associative memory
networks are described by state variables representing the membrane potential
{Si} [9]. Oscillation is assumed to appear in the up-state as an internal process
within each variable φi for the ith unit. Oscillation dynamics is simply given by
a phase model with a resting state and periodic motion [10,11]. cos(φi) stands
for an oscillation current in the dynamics of the membrane potential.

2.2 Mathematical Formulation of the Model

The flip-flop oscillations network of N units is described by the set of state
variables {Si, φi} ∈ ℜN × [0, 2π[N (i ∈ [1, N ]). Dynamic of Si and φi is given by
the following equations:

dSi

dt
= −Si +

∑

WijR(Sj) + σ(cos(φi) − cos(φ0)) + I±
dφi

dt
= ω + (β − ρSi)sin(φi) (1)

with R(x) = 1
2 (tanh(10(x − 0.5)) + 1), φ0 = arcsin(−ω

β
) and cos(φ0) < 0.

R is the spike density of units and input I± will be taken as positive (I+)
or negative (I−) pulses (50 time steps), so that we can focus on the persistent
activity of units after a phasic input. ω and β are respectively the frequency
and the stabilization coefficient of the internal oscillation. ρ and σ represent
mutual feedback between internal oscillation and membrane potential. Wij are
the connection weights describing the strength of coupling between units i and
j. φ0 is known to be a stable fixed point of the equation for φ, and 0 to be a
fixed point for the S equation.

3 An Isolated Unit

3.1 Resting State

The resting state is the stable equilibrium when I = 0 for a single unit. We
assume ω < β so that M0 = (0, φ0) is the fixed point of the system. To study
the linear stability of this fixed point, we write the stability matrix around M0:

DF |M0
=

(

−1 −σsin(φ0)
−ρsin(φ0) βcos(φ0)

)

(2)
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The sign of the eigenvalues of DF |M0
and thus the stability of M0 depends

only on µ = ρσ. With our choice of ω = 1 and β = 1.2, µc ≈ 0.96. If µ < µc, M0 is
a stable fixed point and there is another fixed point M1 = (S1, φ1) with φ1 < φ0

which is unstable. If µ > µc, M0 is unstable and M1 is stable with φ1 > φ0. Fixed
points exchange stability as the bifurcation parameter µ increases (transcritical
bifurcation). The simplified system according to eigenvectors (X1, X2) of the
matrix DF |M0

gives a clear illustration of the bifurcation as

dx1

dt
= ax2

1 + λ1x1
dx2

dt
= λ2x2

(3)

Here a = 0 is equivalent to µ = µc and in this condition there is a positive
measure basin of attraction but some directions are unstable. The resting state
M0 is not a classical fixed point attractor because it does not attract all tra-
jectories from an open neighborhood, but it is still an attractor if we consider
Milnor’s extended definition of attractors. Phase plane (S, φ) Fig. 1 shows that
for µ close to the critical value, nullclines cross twice staying close to each other
in between. That narrow channel makes the configuration indistinguishable from
a Milnor attractor in computer experiments.

Fig. 1. Top: Phase space (S, φ) with vector field and nullclines of the system. The
dashed domain in B shows that M0 have positive measure basin of attraction when µ =
µc. Bottom: Fixed points with their stable and unstable directions for the equivalent
simplified system. A: µ < µc. B: µ = µc. C:µ > µc.

Since we showed µ is the crucial parameter for the stability of the resting
state, we can now consider ρ = 1 and study the dynamics according to σ with a
close look near the critical regime (σ = µc).
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3.2 Constant Input Can Give Oscillations

Under constant input there are two possible dynamics: fixed point and limit
cycle. If

∣

∣

∣

∣

ω

β − S

∣

∣

∣

∣

< 1 (4)

there is a stable fixed point (S1, φ1) with φ1 solution of

ω + (β − σ(cos(φ1) − cos(φ0)) − I)sin(φ1) = 0
S1 = σ(cosφ1 − cosφ0) + I

(5)

If condition 4 is not satisfied, the φ equation in 1 will give rise to oscillatory
dynamics. Identifying S with its temporal average, dφ

dt
= ω + Γsin(φ) with

Γ = β − S will be periodic with period
∫ 2π

0
dφ

ω+(β−S)sin(φ) . This approximation

gives an oscillation at frequency ω′ =
√

ω2 − (β − S)2, which is qualitatively in
good agreement with computer experiments Fig. 2.
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Fig. 2. For each value of constant current I, maximum and minimum values of S1 are
plotted. Dominant frequency of S1 obtained by FFT is compared to the theoretical
value when S is identified with its temporal average: Frequency VS Frequency (theo-
retical).

If we inject an oscillatory input into the system, S oscillates at the same
frequency provided the input frequency is low. For higher frequencies, S can-
not follow the input and shows complex oscillatory dynamics with multiple
frequencies.
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4 Two Coupled Units

For two coupled units, flip-flop of oscillations is observed under various con-
ditions. We will analyze the case µ = 0 and flip-flop properties under vari-
ous strengths of connection weights, assuming symmetrical connections (W12 =
W2,1 = W ).

4.1 Influence of the Feedback Loop

In equation 1, ρ and σ implement a feedback loop representing mutual influence
of φ and S for each unit.

The Case µ = 0. In the case σ = 0 or ρ = 0, φ remains constant φ = φ0:
the system is then a classical recurrent network. This model was used to provide
associative memory network storing patterns in fixed point attractors [9]. For
small coupling strength, the resting state is a fixed point. For strong coupling
strength, two more fixed points appear, one unstable, corresponding to threshold,
and one stable, providing memory storage. After a transient positive input I+

above threshold, the coupled system will be in up-state. A transient negative
input I− can bring it back to resting state.

For a small perturbation (σ ≪ 1 and ρ = 1), the active state is a small
up-state oscillation but associative memory properties (storage, completion) are
preserved.

Growing Oscillations. The up-state oscillation in the membrane potential
dynamics triggered by giving an I+ pulse to unit 1 grows when σ increases
and saturates to an up-state fixed point for strong feedback. Interestingly, for a
range of feedback strength values near µc, S returns transiently near the Milnor
attractor resting state.

Projection of the trajectories of the 4-dimensional system on a 2-dimensional
plane section P illustrates these complex dynamics Fig. 3. A cycle would intersect
this plane in two points. For each σ value, we consider S1 for these intersection
points. For a range between 0.91 and 1.05 with our choice of parameters, there
are much more than two intersection points M*, suggesting chaotic dynamics.

4.2 Influence of the Coupling Strength

The dynamics of two coupled units can be a fixed point attractor, as in the
resting state (I = 0), or down-state or up-state oscillation (depending on the
coupling strength), after a transient input. Near critical value of the feedback
loop, in addition to these, more complex dynamics occur for intermediate cou-
pling strength.
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Fig. 3. A: Influence of the feedback loop- Bifurcation diagram according to σ (Top). S1

coordinates of the intersecting points of the trajectory with a plane section P according
to σ(Bottom). B: Influence of the coupling strengh - S1 maximum and minimum values
and average phase difference (φ1 − φ2) according to W (Top). S1 coordinates of the
intersecting points of the trajectory with a plane section P according to W (Bottom).

Down-state Oscillation. For small coupling strength, the system periodically
visits the resting state for a long time and goes briefly to up-state. The frequency
of this oscillation increases with coupling strength. The two units are anti-phase
(when Si takes maximum value, Sj takes minimum value) Fig. 4 (Bottom).

Up-state Oscillation. For strong coupling strength, a transient input to unit 1
leads to an up-state oscillation Fig. 4 (Top). The two units are perfectly in-phase
at W = 0.75 and phase difference stays small for stronger coupling strength.

Chaotic Dynamics. For intermediate coupling strength, an intermediate cycle
is observed and more complex dynamics occur for a small range (0.58<W <0.78
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Fig. 4. Si temporal evolution, (S1, S2) phase plane and (Si, φi) cylinder space. Top:
Up-state oscillation for strong coupling. Middle: Multiple frequency oscillation for in-
termediate coupling. Bottom: Down-state oscillation for weak coupling.

with our parameters) before full synchronization characterized by φ1 − φ2= 0.
The trajectory can have many intersection points with P and S∗ in Fig. 3 shows
multiple roads to chaos through period doubling.
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5 Application to Slow Selection of a Memorized Pattern

5.1 A Small Network

The network is a set N of five units consisting in a subset N1 of three units
A,B and C and another N2 of two units D and E. In the set N, units have sym-
metrical all-to-all weak connections (WN = 0.01) and in each subset units have
symmetrical all-to-all strong connections (WNi

= 0.1 ∗ M) with M a global pa-
rameter slowly varying in time between 1 and 10. These subsets could represent
two objects stored in the weight matrix.

5.2 Memory Retrieval and Response Selection

We consider a transient structured input into the network. For constant M, a
partial or complete stimulation of a subset Ni can elicit retrieval and completion
of the subset in an up-state as would do a classical auto-associative memory
network.
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Fig. 5. Slow activation of a robust synchronous up-state in N1 during slow increase
of M

In the Milnor attractor condition more complex retrieval can be achieved
when M is slowly increased. As an illustration, we consider transient stimulation
of units A and B from N1 and unit E from N2 Fig. 5. N2 units show anti-phase
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oscillations with increasing frequency. N1 units first show synchronous down-
state oscillations with long stays near the Milnor attractor and gradually go
toward sustained up-state oscillations. In this example, the selection of N1 in
up-state is very slow and synchrony between units plays an important role.

6 Conclusion

We demonstrated that, in cylinder space, a Milnor attractor appears at a crit-
ical condition through forward and reverse saddle-node bifurcations. Near the
critical condition, the pair of saddle and node constructs a pseudo-attractor,
which can serves for observation of Milnor attractor-like properties in computer
experiments. Semi-stability of the Milnor attractor in this model seems to be
associated with the variety of oscillations and chaotic dynamics through period
doubling roads.

We demonstrated that an oscillations network provides a variety of working
memory encoding in dynamical states under the presence of a Milnor attractor.
Applications of oscillatory dynamics have been compared to classical autoas-
sociative memory models. The importance of Milnor attractors was proposed
in the analysis of coupled map lattices in high dimension [11] and for chaotic
itinerancy in the brain [13]. The functional significance of flip-flop oscillations
networks with the above dynamical complexity is of interest for further analysis
of integrative brain dynamics.
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