Skip to main content

Using Image Stimuli to Drive fMRI Analysis

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4984))

Included in the following conference series:

  • 1223 Accesses

Abstract

We introduce a new unsupervised fMRI analysis method based on Kernel Canonical Correlation Analysis which differs from the class of supervised learning methods that are increasingly being employed in fMRI data analysis. Whereas SVM associates properties of the imaging data with simple specific categorical labels, KCCA replaces these simple labels with a label vector for each stimulus containing details of the features of that stimulus. We have compared KCCA and SVM analyses of an fMRI data set involving responses to emotionally salient stimuli. This involved first training the algorithm ( SVM, KCCA) on a subset of fMRI data and the corresponding labels/label vectors, then testing the algorithms on data withheld from the original training phase. The classification accuracies of SVM and KCCA proved to be very similar. However, the most important result arising from this study is that KCCA in able in part to extract many of the brain regions that SVM identifies as the most important in task discrimination blind to the categorical task labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox, D.D., Savoy, R.L.: Functional magnetic resonance imaging (fmri) ‘brain reading’: detecting and classifying distributed patterns of fmri activity in human visual cortex. Neuroimage 19, 261–270 (2003)

    Article  Google Scholar 

  2. Carlson, T.A., Schrater, P., He, S.: Patterns of activity in the categorical representations of objects. Journal of Cognitive Neuroscience 15, 704–717 (2003)

    Article  Google Scholar 

  3. Wang, X., Hutchinson, R., Mitchell, T.M.: Training fmri classifiers to detect cognitive states across multiple human subjects. In: Proceedings of the 2003 Conference on Neural Information Processing Systems (2003)

    Google Scholar 

  4. Mitchell, T., Hutchinson, R., Niculescu, R., Pereira, F., Wang, X., Just, M., Newman, S.: Learning to decode cognitive states from brain images. Machine Learning 1-2, 145–175 (2004)

    Article  Google Scholar 

  5. LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X.: Support vector machines for temporal classification of block design fmri data. NeuroImage 26, 317–329 (2005)

    Article  Google Scholar 

  6. Mourao-Miranda, J., Bokde, A.L.W., Born, C., Hampel, H., Stetter, S.: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional mri data. NeuroImage 28, 980–995 (2005)

    Article  Google Scholar 

  7. Haynes, J.D., Rees, G.: Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience 8, 686–691 (2005)

    Article  Google Scholar 

  8. Davatzikos, C., Ruparel, K., Fan, Y., Shen, D.G., Acharyya, M., Loughead, J.W., Gur, R.C., Langleben, D.D.: Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection. NeuroImage 28, 663–668 (2005)

    Article  Google Scholar 

  9. Kriegeskorte, N., Goebel, R., Bandettini, P.: Information-based functional brain mapping. PANAS 103, 3863–3868 (2006)

    Article  Google Scholar 

  10. Mourao-Miranda, J., Reynaud, E., McGlone, F., Calvert, G., Brammer, M.: The impact of temporal compression and space selection on svm analysis of single-subject and multi-subject fmri data. NeuroImage (accepted, 2006)

    Google Scholar 

  11. Hardoon, D.R., Saunders, C., Szedmak, S., Shawe-Taylor, J.: A correlation approach for automatic image annotation. In: Li, X., ZaĂ¯ane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 681–692. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Wismuller, A., Meyer-Base, A., Lange, O., Auer, D., Reiser, M.F., Sumners, D.: Model-free functional mri analysis based on unsupervised clustering. Journal of Biomedical Informatics 37, 10–18 (2004)

    Article  Google Scholar 

  13. Ciuciu, P., Poline, J., Marrelec, G., Idier, J., Pallier, C., Benali, H.: Unsupervised robust non-parametric estimation of the hemodynamic response function for any fmri experiment. IEEE TMI 22, 1235–1251 (2003)

    Google Scholar 

  14. O’Toole, A.J., Jiang, F., Abdi, H., Haxby, J.V.: Partially distributed representations of objects and faces in ventral temporal cortex. Journal of Cognitive Neuroscience 17(4), 580–590 (2005)

    Article  Google Scholar 

  15. Friman, O., Borga, M., Lundberg, P., Knutsson, H.: Adaptive analysis of fMRI data. NeuroImage 19, 837–845 (2003)

    Article  Google Scholar 

  16. Friman, O., Carlsson, J., Lundberg, P., Borga, M., Knutsson, H.: Detection of neural activity in functional MRI using canonical correlation analysis. Magnetic Resonance in Medicine 45(2), 323–330 (2001)

    Article  Google Scholar 

  17. Hardoon, D.R., Shawe-Taylor, J., Friman, O.: KCCA for fMRI Analysis. In: Proceedings of Medical Image Understanding and Analysis, London, UK (2004)

    Google Scholar 

  18. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer vision, Kerkyra, Greece, pp. 1150–1157 (1999)

    Google Scholar 

  19. Hardoon, D.R., Mourao-Miranda, J., Brammer, M., Shawe-Taylor, J.: Unsupervised analysis of fmri data using kernel canonical correlation. NeuroImag (in press, 2007)

    Google Scholar 

  20. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: International Conference on Computer Vision and Pattern Recognition, pp. 257–263 (2003)

    Google Scholar 

  21. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  22. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  23. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: D. Proc. Fifth Ann. Workshop on Computational Learning Theory, pp. 144–152. ACM, New York (1992)

    Chapter  Google Scholar 

  24. Fyfe, C., Lai, P.L.: Kernel and nonlinear canonical correlation analysis. International Journal of Neural Systems 10, 365–377 (2001)

    Google Scholar 

  25. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Computation 16, 2639–2664 (2004)

    Article  MATH  Google Scholar 

  26. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  27. Stephan, K.E., Harrison, L.M., Penny, W.D., Friston, K.J.: Biophysical models of fmri responses. Current Opinion in Neurobiology 14, 629–635 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hardoon, D.R., MourĂ£o-Miranda, J., Brammer, M., Shawe-Taylor, J. (2008). Using Image Stimuli to Drive fMRI Analysis. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69158-7_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69154-9

  • Online ISBN: 978-3-540-69158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics