Skip to main content

Hierarchical Feature Extraction for Compact Representation and Classification of Datasets

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4984))

Included in the following conference series:

  • 1255 Accesses

Abstract

Feature extraction methods do generally not account for hierarchical structure in the data. For example, PCA and ICA provide transformations that solely depend on global properties of the overall dataset. We here present a general approach for the extraction of feature hierarchies from datasets and their use for classification or clustering. A hierarchy of features extracted from a dataset thereby constitutes a compact representation of the set that on the one hand can be used to characterize and understand the data and on the other hand serves as a basis to classify or cluster a collection of datasets. As a proof of concept, we demonstrate the feasibility of this approach with an application to mixtures of Gaussians with varying degree of structuredness and to a clinical EEG recording.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jolliffe, I.: Principal Component Analysis. Springer, New York (1986)

    Google Scholar 

  2. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, Chichester (2001)

    Google Scholar 

  3. Fukushima, K.: Neural network model for a mechanism of pattern recognition unaffected by shift in position — neocognitron. Transactions IECE 62-A(10), 658–665 (1979)

    Google Scholar 

  4. Bregler, C., Omohundro, S.: Surface learning with applications to lipreading. In: Cowan, J., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information Precessing Systems, vol. 6, pp. 43–50. Morgan Kaufmann Publishers, San Mateo (1994)

    Google Scholar 

  5. Bach, F., Jordan, M.: Beyond independent components: Trees and clusters. Journal of Machine Learning Research 4, 1205–1233 (2003)

    Article  MathSciNet  Google Scholar 

  6. Bishop, C., Tipping, M.: A hierarchical latent variable model for data visualization. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 281–293 (1998)

    Article  Google Scholar 

  7. Wang, Y., Luo, L., Freedman, M., Kung, S.: Probabilistic principal component subspaces: A hierarchical finite mixture model for data visualization. IEEE Transactions on Neural Networks 11(3), 625–636 (2000)

    Article  Google Scholar 

  8. Tipping, M., Bishop, C.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B 61(3), 611–622 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kondor, R., Jebara, T.: A kernel between sets of vectors. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the ICML, pp. 361–368. AAAI Press, Menlo Park (2003)

    Google Scholar 

  10. Desobry, F., Davy, M., Fitzgerald, W.: A class of kernels for sets of vectors. In: Proceedings of the ESANN, pp. 461–466 (2005)

    Google Scholar 

  11. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, Inc., Englewood Cliffs (1988)

    MATH  Google Scholar 

  12. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley–Interscience, Chichester (2000)

    Google Scholar 

  13. Ward, J.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  14. Fred, A., Leitao, J.: Clustering under a hypothesis of smooth dissimilarity increments. In: Proceedings of the ICPR, vol. 2, pp. 190–194 (2000)

    Google Scholar 

  15. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schubert, M., Kohlmorgen, J. (2008). Hierarchical Feature Extraction for Compact Representation and Classification of Datasets. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69158-7_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69154-9

  • Online ISBN: 978-3-540-69158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics