Skip to main content

Population Coding of Song Element Sequence in the Songbird Brain Nucleus HVC

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4984))

Included in the following conference series:

  • 1286 Accesses

Abstract

Birdsong is a complex vocalization composed of various song elements organized according to sequential rules. To reveal the neural representation of song element sequence, we recorded the neural responses to all possible element pairs of stimuli in the Bengalese finch brain nucleus HVC. Our results show that each neuron has broad but differential response properties to element sequences. We calculated the time course of population activity vectors and mutual information between auditory stimuli and neural activities. The clusters of population vectors responding to second elements had a large overlap, whereas the clusters responding to first elements were clearly divided. At the same timing, confounded information also significantly increased. These results indicate that the song element sequence is encoded in a neural ensemble in HVC via population coding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Okanoya, K.: The Bengalese finch: a window on the behavioral neurobiology of birdsong syntax. Ann. N.Y. Acad. Sci. 1016, 724–735 (2004)

    Article  Google Scholar 

  2. Doupe, A.J., Kuhl, P.K.: The Bengalese finch: a window on the behavioral neurobiology of birdsong syntax. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999)

    Article  Google Scholar 

  3. Margoliash, D., Fortune, E.S.: Temporal and harmonic combination-selective neurons in the zebra finch’ s HVc. J. Neurosci. 12, 4309–4326 (1992)

    Google Scholar 

  4. Lewicki, M.S., Arthur, B.J.: Hierarchical organization of auditory temporal context sensitivity. J. Neurosci. 16, 6987–6998 (1996)

    Google Scholar 

  5. Drew, P.J., Abbott, L.F.: Model of song selectivity and sequence generation in area HVc of the songbird. J. Neurophysiol. 89, 2697–2706 (2003)

    Article  Google Scholar 

  6. Deneve, S., Latham, P.E., Pouget, A.: Reading population codes: a neural implementation of ideal observers. Nat. Neurosci. 2, 740–745 (2001)

    Google Scholar 

  7. Pouget, A., Dayan, P., Zemel, R.: Information processing with population codes. Nat. Rev. Neurosci. 1, 125–132 (2000)

    Article  Google Scholar 

  8. Green, D., Swets, J.: Signal Detection Theory and Psychophysics. Wiley, New York (1966)

    Google Scholar 

  9. Theunissen, F.E., Doupe, A.J.: Temporal and spectral sensitivity of complex auditory neurons in the nucleus HVc of male zebra finches. J. Neurosci. 18, 3786–3802 (1998)

    Google Scholar 

  10. Matsumoto, N., Okada, M., Sugase-Miyamoto, Y., Yamane, S., Kawano, K.: Population dynamics of face-responsive neurons in the inferior temporal cortex. Cerebr. Cort. 15, 1103–1112 (2005)

    Article  Google Scholar 

  11. Gower, J.C.: Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–328 (1966)

    MATH  MathSciNet  Google Scholar 

  12. Sugase, Y., Yamane, S., Ueno, S., Kawano, K.: Global and fine information coded by single neurons in the temporal visual cortex. Nature 400, 869–873 (1999)

    Article  Google Scholar 

  13. Reich, D.S., Mechler, F., Victor, J.D.: Formal and attribute-specific information in primary visual cortex. J. Neurophysiol. 85, 305–318 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nishikawa, J., Okada, M., Okanoya, K. (2008). Population Coding of Song Element Sequence in the Songbird Brain Nucleus HVC. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69158-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69154-9

  • Online ISBN: 978-3-540-69158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics