Abstract
In the paper we derive and discuss a wide class of algorithms for 3D Super-symmetric Nonnegative Tensor Factorization (SNTF) or nonnegative symmetric PARAFAC, and as a special case: Symmetric Nonnegative Matrix Factorization (SNMF) that have many potential applications, including multi-way clustering, feature extraction, multi- sensory or multi-dimensional data analysis, and nonnegative neural sparse coding. The main advantage of the derived algorithms is relatively low complexity, and in the case of multiplicative algorithms possibility for straightforward extension of the algorithms to L-order tensors factorization due to some nice symmetric property. We also propose to use a wide class of cost functions such as Squared Euclidean, Kullback Leibler I-divergence, Alpha divergence and Beta divergence. Preliminary experimental results confirm the validity and good performance of some of these algorithms, especially when the data have sparse representations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amari, S.: Differential-Geometrical Methods in Statistics. Springer, Heidelberg (1985)
Hazan, T., Polak, S., Shashua, A.: Sparse image coding using a 3D non-negative tensor factorization. In: International Conference of Computer Vision (ICCV), pp. 50–57 (2005)
Workshop on tensor decompositions and applications, CIRM, Marseille, France (2005)
Heiler, M., Schnoerr, C.: Controlling sparseness in non-negative tensor factorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 56–67. Springer, Heidelberg (2006)
Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. John Wiley and Sons, New York (2004)
Shashua, A., Zass, R., Hazan, T.: Multi-way clustering using super-symmetric non-negative tensor factorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 595–608. Springer, Heidelberg (2006)
Zass, R., Shashua, A.: A unifying approach to hard and probabilistic clustering. In: International Conference on Computer Vision (ICCV), Beijing, China (2005)
Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: Proc.of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2006)
Berry, M., Browne, M., Langville, A., Pauca, P., Plemmons, R.: Algorithms and applications for approximate nonnegative matrix factorization. In: Computational Statistics and Data Analysis (in press, 2006)
Cichocki, A., Zdunek, R., Amari, S.: Csiszar’s divergences for non-negative matrix factorization: Family of new algorithms. In: Rosca, J.P., Erdogmus, D., PrÃncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 32–39. Springer, Heidelberg (2006)
Cichocki, A., Amari, S., Zdunek, R., Kompass, R., Hori, G., He, Z.: Extended SMART algorithms for non-negative matrix factorization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 548–562. Springer, Heidelberg (2006)
Cichocki, A., Zdunek, R.: NTFLAB for Signal Processing. Technical report, Laboratory for Advanced Brain Signal Processing, BSI, RIKEN, Saitama, Japan (2006)
Dhillon, I., Sra, S.: Generalized nonnegative matrix approximations with Bregman divergences. In: Neural Information Proc. Systems, Vancouver, Canada, pp. 283–290 (2005)
Kim, M., Choi, S.: Monaural music source separation: Nonnegativity, sparseness, and shift-invariance. In: Rosca, J.P., Erdogmus, D., PrÃncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 617–624. Springer, Heidelberg (2006)
Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)
Mørup, M., Hansen, L.K., Herrmann, C.S., Parnas, J., Arnfred, S.M.: Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage 29, 938–947 (2006)
Miwakeichi, F., Martinez-Montes, E., Valds-Sosa, P., Nishiyama, N., Mizuhara, H., Yamaguchi, Y.: Decomposing EEG data into space−time−frequency components using parallel factor analysi. NeuroImage 22, 1035–1045 (2004)
Zass, R., Shashua, A.: Nonnegative sparse pca. In: Neural Information Processing Systems (NIPS), Vancuver, Canada (2006)
Zass, R., Shashua, A.: Doubly stochastic normalization for spectral clustering. In: Neural Information Processing Systems (NIPS), Vancuver, Canada (2006)
Comon, P.: Tensor decompositions-state of the art and applications. In: McWhirter, J.G., Proudler, I.K. (eds.) Institute of Mathematics and its Applications Conference on Mathematics in Signal Processing, pp. 18–20. Clarendon Press, Oxford, UK (2001)
Byrne, C.L.: Choosing parameters in block-iterative or ordered-subset reconstruction algorithms. IEEE Transactions on Image Processing 14, 321–327 (2005)
Minami, M., Eguchi, S.: Robust blind source separation by Beta-divergence. Neural Computation 14, 1859–1886 (2002)
Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., Amari, S.I.: Novel multi-layer nonnegative tensor factorization with sparsity constraints. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 271–280. Springer, Heidelberg (2007)
Cichocki, A., Zdunek, R.: Regularized alternating least squares algorithms for non-negative matrix/tensor factorizations. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4493, pp. 793–802. Springer, Heidelberg (2007)
Cichocki, A., Zdunek, R., Amari, S.: New algorithms for non-negative matrix factorization in applications to blind source separation. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP2006, Toulouse, France, vol. 5, pp. 621–624 (2006)
Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., Amari, S.: Nonnegative tensor factorization using Alpha and Beta divergencies. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2007), Honolulu, Hawaii, USA, vol. III, pp. 1393–1396 (2007)
Zdunek, R., Cichocki, A.: Nonnegative matrix factorization with constrained second-order optimization. Signal Processing 87, 1904–1916 (2007)
Zdunek, R., Cichocki, A.: Nonnegative matrix factorization with quadratic programming. Neurocomputing (accepted, 2007)
Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. In: Proc. of the 22-th International Conference on Machine Learning, Bonn, Germany (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cichocki, A., Jankovic, M., Zdunek, R., Amari, Si. (2008). Sparse Super Symmetric Tensor Factorization. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_81
Download citation
DOI: https://doi.org/10.1007/978-3-540-69158-7_81
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69154-9
Online ISBN: 978-3-540-69158-7
eBook Packages: Computer ScienceComputer Science (R0)