Skip to main content

Sparse Super Symmetric Tensor Factorization

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4984))

Included in the following conference series:

  • 1308 Accesses

Abstract

In the paper we derive and discuss a wide class of algorithms for 3D Super-symmetric Nonnegative Tensor Factorization (SNTF) or nonnegative symmetric PARAFAC, and as a special case: Symmetric Nonnegative Matrix Factorization (SNMF) that have many potential applications, including multi-way clustering, feature extraction, multi- sensory or multi-dimensional data analysis, and nonnegative neural sparse coding. The main advantage of the derived algorithms is relatively low complexity, and in the case of multiplicative algorithms possibility for straightforward extension of the algorithms to L-order tensors factorization due to some nice symmetric property. We also propose to use a wide class of cost functions such as Squared Euclidean, Kullback Leibler I-divergence, Alpha divergence and Beta divergence. Preliminary experimental results confirm the validity and good performance of some of these algorithms, especially when the data have sparse representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amari, S.: Differential-Geometrical Methods in Statistics. Springer, Heidelberg (1985)

    MATH  Google Scholar 

  2. Hazan, T., Polak, S., Shashua, A.: Sparse image coding using a 3D non-negative tensor factorization. In: International Conference of Computer Vision (ICCV), pp. 50–57 (2005)

    Google Scholar 

  3. Workshop on tensor decompositions and applications, CIRM, Marseille, France (2005)

    Google Scholar 

  4. Heiler, M., Schnoerr, C.: Controlling sparseness in non-negative tensor factorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 56–67. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. John Wiley and Sons, New York (2004)

    Google Scholar 

  6. Shashua, A., Zass, R., Hazan, T.: Multi-way clustering using super-symmetric non-negative tensor factorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 595–608. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Zass, R., Shashua, A.: A unifying approach to hard and probabilistic clustering. In: International Conference on Computer Vision (ICCV), Beijing, China (2005)

    Google Scholar 

  8. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: Proc.of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2006)

    Google Scholar 

  9. Berry, M., Browne, M., Langville, A., Pauca, P., Plemmons, R.: Algorithms and applications for approximate nonnegative matrix factorization. In: Computational Statistics and Data Analysis (in press, 2006)

    Google Scholar 

  10. Cichocki, A., Zdunek, R., Amari, S.: Csiszar’s divergences for non-negative matrix factorization: Family of new algorithms. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 32–39. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Cichocki, A., Amari, S., Zdunek, R., Kompass, R., Hori, G., He, Z.: Extended SMART algorithms for non-negative matrix factorization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Å»urada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 548–562. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Cichocki, A., Zdunek, R.: NTFLAB for Signal Processing. Technical report, Laboratory for Advanced Brain Signal Processing, BSI, RIKEN, Saitama, Japan (2006)

    Google Scholar 

  13. Dhillon, I., Sra, S.: Generalized nonnegative matrix approximations with Bregman divergences. In: Neural Information Proc. Systems, Vancouver, Canada, pp. 283–290 (2005)

    Google Scholar 

  14. Kim, M., Choi, S.: Monaural music source separation: Nonnegativity, sparseness, and shift-invariance. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 617–624. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  16. Mørup, M., Hansen, L.K., Herrmann, C.S., Parnas, J., Arnfred, S.M.: Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage 29, 938–947 (2006)

    Article  Google Scholar 

  17. Miwakeichi, F., Martinez-Montes, E., Valds-Sosa, P., Nishiyama, N., Mizuhara, H., Yamaguchi, Y.: Decomposing EEG data into space−time−frequency components using parallel factor analysi. NeuroImage 22, 1035–1045 (2004)

    Article  Google Scholar 

  18. Zass, R., Shashua, A.: Nonnegative sparse pca. In: Neural Information Processing Systems (NIPS), Vancuver, Canada (2006)

    Google Scholar 

  19. Zass, R., Shashua, A.: Doubly stochastic normalization for spectral clustering. In: Neural Information Processing Systems (NIPS), Vancuver, Canada (2006)

    Google Scholar 

  20. Comon, P.: Tensor decompositions-state of the art and applications. In: McWhirter, J.G., Proudler, I.K. (eds.) Institute of Mathematics and its Applications Conference on Mathematics in Signal Processing, pp. 18–20. Clarendon Press, Oxford, UK (2001)

    Google Scholar 

  21. Byrne, C.L.: Choosing parameters in block-iterative or ordered-subset reconstruction algorithms. IEEE Transactions on Image Processing 14, 321–327 (2005)

    Article  MathSciNet  Google Scholar 

  22. Minami, M., Eguchi, S.: Robust blind source separation by Beta-divergence. Neural Computation 14, 1859–1886 (2002)

    Article  MATH  Google Scholar 

  23. Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., Amari, S.I.: Novel multi-layer nonnegative tensor factorization with sparsity constraints. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 271–280. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Cichocki, A., Zdunek, R.: Regularized alternating least squares algorithms for non-negative matrix/tensor factorizations. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4493, pp. 793–802. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Cichocki, A., Zdunek, R., Amari, S.: New algorithms for non-negative matrix factorization in applications to blind source separation. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP2006, Toulouse, France, vol. 5, pp. 621–624 (2006)

    Google Scholar 

  26. Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., Amari, S.: Nonnegative tensor factorization using Alpha and Beta divergencies. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2007), Honolulu, Hawaii, USA, vol. III, pp. 1393–1396 (2007)

    Google Scholar 

  27. Zdunek, R., Cichocki, A.: Nonnegative matrix factorization with constrained second-order optimization. Signal Processing 87, 1904–1916 (2007)

    Article  Google Scholar 

  28. Zdunek, R., Cichocki, A.: Nonnegative matrix factorization with quadratic programming. Neurocomputing (accepted, 2007)

    Google Scholar 

  29. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. In: Proc. of the 22-th International Conference on Machine Learning, Bonn, Germany (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cichocki, A., Jankovic, M., Zdunek, R., Amari, Si. (2008). Sparse Super Symmetric Tensor Factorization. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69158-7_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69154-9

  • Online ISBN: 978-3-540-69158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics