Skip to main content

Design Principles and Constraints Underlying the Construction of Brain-Based Devices

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4985))

Included in the following conference series:

Abstract

Without a doubt the most sophisticated behavior seen in biological agents is demonstrated by organisms whose behavior is guided by a nervous system. Thus, the construction of behaving devices based on principles of nervous systems may have much to offer. Our group has built series of brain-based devices (BBDs) over the last fifteen years to provide a heuristic for studying brain function by embedding neurobiological principles on a physical platform capable of interacting with the real world. These BBDs have been used to study perception, operant conditioning, episodic and spatial memory, and motor control through the simulation of brain regions such as the visual cortex, the dopaminergic reward system, the hippocampus, and the cerebellum. Following the brain-based model, we argue that an intelligent machine should be constrained by the following design principles: (i) it should incorporate a simulated brain with detailed neuroanatomy and neural dynamics that controls behavior and shapes memory, (ii) it should organize the unlabeled signals it receives from the environment into categories without a priori knowledge or instruction, (iii) it should have a physical instantiation, which allows for active sensing and autonomous movement in the environment, (iv) it should engage in a task that is initially constrained by minimal set of innate behaviors or reflexes, (v) it should have a means to adapt the device’s behavior, called value systems, when an important environmental event occurs, and (vi) it should allow comparisons with experimental data acquired from animal nervous systems. Like the brain, these devices operate according to selectional principles through which they form categorical memory, associate categories with innate value, and adapt to the environment. This approach may provide the groundwork for the development of intelligent machines that follow neurobiological rather than computational principles in their construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arleo, A., Smeraldi, F., Gerstner, W.: Cognitive navigation based on nonuniform Gabor space sampling, unsupervised growing networks, and reinforcement learning. IEEE Trans. Neural Net. 15, 639–652 (2004)

    Article  Google Scholar 

  2. Aston-Jones, G., Bloom, F.E.: Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosc. 1, 887–900 (1981)

    Google Scholar 

  3. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosc. 2, 32–48 (1982)

    Google Scholar 

  4. Borg-Graham, L.: Modeling the electrical behavior of cortical neurons - simulations of hippocampal pyramidal cells. In: Cotterill, R.M.J. (ed.) Computer Simulation in Brain Science, Cambridge University Press, Cambridge (1987)

    Google Scholar 

  5. Bower, J.M., Beeman, D.: The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System. TELOS/Springer-Verlag (1994)

    Google Scholar 

  6. Brun, V.H., Otnass, M.K., Molden, S., Steffenach, H.A., Witter, M.P., Moser, M.B., Moser, E.I.: Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296, 2243–2246 (2002)

    Article  Google Scholar 

  7. Burgess, N., Donnett, J.G., Jeffery, K.J., O’Keefe, J.: Robotic and neuronal simulation of the hippocampus and rat navigation. Philos. Trans. R Soc. Lond. B Biol. Sci. 352, 1535–1543 (1997)

    Article  Google Scholar 

  8. Chiel, H.J., Beer, R.D.: The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 20, 553–557 (1997)

    Article  Google Scholar 

  9. Clark, A.: Being there. Putting brain, body, and world together again. MIT Press, Cambridge (1997)

    Google Scholar 

  10. Doya, K.: Metalearning and neuromodulation. Neural Netw. 15, 495–506 (2002)

    Article  Google Scholar 

  11. Edelman, G.M., Reeke, G.N., Gall, W.E., Tononi, G., Williams, D., Sporns, O.: Synthetic neural modeling applied to a real-world artifact. Proc. Natl. Acad. Sci. USA 89, 7267–7271 (1992)

    Article  Google Scholar 

  12. Edelman, G.M., Reeke Jr., G.N.: Selective networks capable of representative transformations, limited generalizations, and associative memory. Proc. Natl. Acad. Sci. USA 79, 2091–2095 (1982)

    Article  MathSciNet  Google Scholar 

  13. Ferbinteanu, J., Shapiro, M.L.: Prospective and retrospective memory coding in the hippocampus. Neuron 40, 1227–1239 (2003)

    Article  Google Scholar 

  14. Fleischer, J.G., Gally, J.A., Edelman, G.M., Krichmar, J.L.: Retrospective and prospective responses arising in a modeled hippocampus during maze navigation by a brain-based device. Proc. Natl. Acad. Sci. USA 104, 3556–3561 (2007)

    Article  Google Scholar 

  15. Friston, K.J., Tononi, G., Reeke, G.N., Sporns, O., Edelman, G.M.: Value-dependent selection in the brain: simulation in a synthetic neural model. Neuroscience 59, 229–243 (1994)

    Article  Google Scholar 

  16. Geisler, W.S.: Motion streaks provide a spatial code for motion direction. Nature 400, 65–69 (1999)

    Article  Google Scholar 

  17. Guazzelli, A., Bota, M., Arbib, M.A.: Competitive Hebbian learning and the hippocampal place cell system: modeling the interaction of visual and path integration cues. Hippocampus 11, 216–239 (2001)

    Article  Google Scholar 

  18. Hasselmo, M.E., Hay, J., Ilyn, M., Gorchetchnikov, A.: Neuromodulation, theta rhythm and rat spatial navigation. Neural Netw. 15, 689–707 (2002)

    Article  Google Scholar 

  19. Hines, M.L., Carnevale, N.T.: The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997)

    Article  Google Scholar 

  20. Itti, L.: Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process 13, 1304–1318 (2004)

    Article  Google Scholar 

  21. Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-timing dynamics of neuronal groups. Cereb Cortex 14, 933–944 (2004)

    Article  Google Scholar 

  22. Krekelberg, B., Dannenberg, S., Hoffmann, K.P., Bremmer, F., Ross, J.: Neural correlates of implied motion. Nature 424, 674–677 (2003)

    Article  Google Scholar 

  23. Krichmar, J.L., Edelman, G.M.: Machine psychology: autonomous behavior, perceptual categorization and conditioning in a brain-based device. Cereb Cortex 12, 818–830 (2002)

    Article  Google Scholar 

  24. Krichmar, J.L., Edelman, G.M.: Brain-based devices for the study of nervous systems and the development of intelligent machines. Artif. Life 11, 63–77 (2005)

    Article  Google Scholar 

  25. Krichmar, J.L., Nitz, D.A., Gally, J.A., Edelman, G.M.: Characterizing functional hippocampal pathways in a brain-based device as it solves a spatial memory task. Proc. Natl. Acad. Sci. USA 102, 2111–2116 (2005a)

    Article  Google Scholar 

  26. Krichmar, J.L., Reeke, G.N.: The Darwin Brain-Based Automata: Synthetic Neural Models and Real-World Devices. In: Reeke, G.N., Poznanski, R.R., Lindsay, K.A., Rosenberg, J.R., Sporns, O. (eds.) Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics, pp. 613–638. Taylor & Francis, Boca Raton (2005)

    Google Scholar 

  27. Krichmar, J.L., Seth, A.K., Nitz, D.A., Fleischer, J.G., Edelman, G.M.: Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions. Neuroinformatics 3, 197–221 (2005b)

    Article  Google Scholar 

  28. McKinstry, J.L., Edelman, G.M., Krichmar, J.L.: A cerebellar model for predictive motor control tested in a brain-based device. Proc. Natl. Acad. Sci. USA (2006)

    Google Scholar 

  29. Medina, J.F., Carey, M.R., Lisberger, S.G.: The representation of time for motor learning. Neuron 45, 157–167 (2005)

    Article  Google Scholar 

  30. Montague, P.R., Dayan, P., Sejnowski, T.J.: A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci 16, 1936–1947 (1996)

    Google Scholar 

  31. Morris, R.: Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60 (1984)

    Article  Google Scholar 

  32. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971)

    Article  Google Scholar 

  33. Pinsky, P.F., Rinzel, J.: Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1, 39–60 (1994)

    Article  Google Scholar 

  34. Prescott, T.J., Montes Gonzalez, F.M., Gurney, K., Humphries, M.D., Redgrave, P.: A robot model of the basal ganglia: Behavior and intrinsic processing. Neural Netw. 19, 31–61 (2006)

    Article  MATH  Google Scholar 

  35. Schultz, W., Dayan, P., Montague, P.R.: A neural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    Article  Google Scholar 

  36. Seth, A.K.: Causal connectivity of evolved neural networks during behavior. Network 16, 35–54 (2005)

    Article  Google Scholar 

  37. Seth, A.K., McKinstry, J.L., Edelman, G.M., Krichmar, J.L.: Active sensing of visual and tactile stimuli by brain-based devices. International Journal of Robotics and Automation 19, 222–238 (2004)

    Article  Google Scholar 

  38. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  39. Sporns, O., Alexander, W.H.: Neuromodulation and plasticity in an autonomous robot. Neural Netw. 15, 761–774 (2002)

    Article  Google Scholar 

  40. Thierry, A.M., Gioanni, Y., Degenetais, E., Glowinski, J.: Hippocampo-prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 10, 411–419 (2000)

    Article  Google Scholar 

  41. Wolpert, D., Miall, R., Kawato, M.: Internal models in the cerebellum. Trends in Cognitive Sciences 2, 338–347 (1998)

    Article  Google Scholar 

  42. Worgotter, F., Porr, B.: Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput. 17, 245–319 (2005)

    Article  Google Scholar 

  43. Yu, A.J., Dayan, P.: Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krichmar, J.L., Edelman, G.M. (2008). Design Principles and Constraints Underlying the Construction of Brain-Based Devices. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69162-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69162-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69159-4

  • Online ISBN: 978-3-540-69162-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics