Skip to main content

Incorporating Domain Knowledge into a Min-Max Modular Support Vector Machine for Protein Subcellular Localization

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4985))

Included in the following conference series:

Abstract

As biological sequences and various annotation data grow rapidly in public databases, the classification problems become larger and more complicated. New classifier designs are necessitated. Besides, how to incorporate some explicit domain knowledge into learning methods is also a big issue. In this paper, we adopt a modular classifier, min-max modular support vector machine (M3-SVM) to solve protein subcellular localization problem, and use the domain knowledge of taxonomy information to guide the task decomposition. Experimental results show that M3-SVM can maintain the overall accuracy and improve location average accuracy compared with traditional SVMs. The taxonomy decomposition is superior to other decomposition methods on a majority of the classes. The results also demonstrate a speedup on training time of M3-SVM compared with traditional SVMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collobert, R., Bengio, S., Bengio, Y.: A parallel mixture of SVMs for very large scale problems (2002)

    Google Scholar 

  2. Cao, L.J., Keerthi, S.S., Ong, C.J., Zhang, J.Q., Periyathamby, U., Fu, X.J., Lee, H.P.: Parallel sequential minimal optimization for the training of support vector machines. IEEE Trans Neural Network 2006, 1039–1049 (2004)

    Google Scholar 

  3. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. Advances in kernel methods: support vector learning table of contents, 185–208 (1999)

    Google Scholar 

  4. Lu, B.L., Wang, K.A., Utiyama, M., Isahara, H.: A part-versus-part method for massively parallel training of support vector machines. In: Proceedings of IEEE International Joint Conference on Neural Networks, vol. 1, pp. 735–740 (2004)

    Google Scholar 

  5. Lu, B.L., Ito, M.: Task decomposition and module combination based on class relations: a modular neural network for pattern classification. IEEE Transactions on Neural Networks 10(5), 1244–1256 (1999)

    Article  Google Scholar 

  6. Cedano, J., Aloy, P., Perez-Pons, J.A., Querol, E.: Relation between amino acid composition and cellular location of proteins. Journal of Molecular Biology 266(3), 594–600 (1997)

    Article  Google Scholar 

  7. Hua, S., Sun, Z.: Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17(8), 721–728 (2001)

    Article  Google Scholar 

  8. Park, K.J., Kanehisa, M.: Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 19(13), 1656–1663 (2003)

    Article  Google Scholar 

  9. Liu, F.Y., Wu, K., Zhao, H., Lu, B.L.: Fast text categorization with a min-max modular support vector machine. In: Proceedings of IEEE International Joint Conference on Neural Networks, pp. 570–575 (2005)

    Google Scholar 

  10. Wen, Y.M., Lu, B.L., Zhao, H.: Equal clustering makes min-max modular support vector machine more efficient. In: Proceedings of the 12th International Conference on Neural Information Processing, pp. 77–82 (2006)

    Google Scholar 

  11. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M., Estreicher, A., Gasteiger, E., Martin, M., Michoud, K., O’Donovan, C., Phan, I., et al.: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 31(1), 365–370 (2003)

    Article  Google Scholar 

  12. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. Software 80, 604–611 (2001), http://www.csie.ntu.edu.tw/cjlin/libsvm

    Google Scholar 

  13. Pierleoni, A., Martelli, P.L., Fariselli, P., Casadio, R.: BaCelLo: a balanced subcellular localization predictor. Bioinformatics 22(14), 408–416 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Y., Lu, BL. (2008). Incorporating Domain Knowledge into a Min-Max Modular Support Vector Machine for Protein Subcellular Localization. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69162-4_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69162-4_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69159-4

  • Online ISBN: 978-3-540-69162-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics