Skip to main content

Quantum Entanglement Analysis Based on Abstract Interpretation

  • Conference paper
Static Analysis (SAS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5079))

Included in the following conference series:

Abstract

Entanglement is a non local property of quantum states which has no classical counterpart and plays a decisive role in quantum information theory. Several protocols, like the teleportation, are based on quantum entangled states. Moreover, any quantum algorithm which does not create entanglement can be efficiently simulated on a classical computer. The exact role of the entanglement is nevertheless not well understood. Since an exact analysis of entanglement evolution induces an exponential slowdown, we consider approximative analysis based on the framework of abstract interpretation. In this paper, a concrete quantum semantics based on superoperators is associated with a simple quantum programming language. The representation of entanglement, i.e. the design of the abstract domain is a key issue. A representation of entanglement as a partition of the memory is chosen. An abstract semantics is introduced, and the soundness of the approximation is proven.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramsky, S.: A Cook’s tour of a simple quantum programming language. In: 3rd International Symposium on Domain Theory, Xi’an, China (May 2004)

    Google Scholar 

  2. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)

    Article  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 53–85 (1999)

    Article  MathSciNet  Google Scholar 

  5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

    Google Scholar 

  6. Eggeling, T., Werner, R.F.: Separability properties of tripartite states with uuu -symmetry. Phys. Rev. A 63(0421111) (2001)

    Google Scholar 

  7. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)

    Article  MATH  Google Scholar 

  8. Gay, S.J.: Quantum programming languages: Survey and bibliography. Mathematical Structures in Computer Science 16(4) (2006)

    Google Scholar 

  9. Gay, S.J., Rajagopal, A.K., Papanikolaou, N.: Qmc: A model qmc: A model checker for quantum systems. arxiv:0704.3705 (2007)

    Google Scholar 

  10. Gurvits, L.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement. In: Proceedings of the 35-th ACM Symposium on Theory of Computing, p. 10. ACM Press, New York (2003)

    Google Scholar 

  11. Jorrand, P., Mhalla, M.: Separability of pure n-qubit states: two characterizations. IJFCS 14(5), 797–814 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Kashefi, E.: Quantum domain theory - definitions and applications. In: Proceedings of Computability and Complexity in Analysis (CCA 2003) (2003)

    Google Scholar 

  13. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  14. Perdrix, S.: Formal models of quantum computation: resources, abstract machines and measurement-based quantum computation (in french). PhD thesis, Institut National Polytechnique de Grenoble (2006)

    Google Scholar 

  15. Perdrix, S.: A hierarchy of quantum semantics. In: The Proceedings of the 3rd International Workshop on Development of Computational Models (to appear, 2007)

    Google Scholar 

  16. Prost, F., Zerrari, C.: A logical analysis of entanglement and separability in quantum higher-order functions. arXiv.org:0801.0649 (2008)

    Google Scholar 

  17. Selinger, P.: A brief survey of quantum programming languages. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 1–6. Springer, Heidelberg (2004)

    Google Scholar 

  18. Selinger, P.: Towards a quantum programming language. Mathematical Structures in Computer Science 14(4), 527–586 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shor, P.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Goldwasser, S. (ed.) Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  20. Van den Nest, M., Miyake, A., Dür, W., Briegel, H.J.: Universal resources for measurement–based quantum computation (2006)

    Google Scholar 

  21. White, A.G., Gilchrist, A., Pryde, G.J., O’Brien, J.L., Bremner, M.J., Langford, N.K.: Measuring two-qubit gates. J. Opt. Soc. Am. B 24(2), 172–183 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

María Alpuente Germán Vidal

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perdrix, S. (2008). Quantum Entanglement Analysis Based on Abstract Interpretation. In: Alpuente, M., Vidal, G. (eds) Static Analysis. SAS 2008. Lecture Notes in Computer Science, vol 5079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69166-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69166-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69163-1

  • Online ISBN: 978-3-540-69166-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics