Skip to main content

Comparing Local Feature Descriptors in pLSA-Based Image Models

  • Conference paper
Pattern Recognition (DAGM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5096))

Included in the following conference series:

Abstract

Probabilistic models with hidden variables such as probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allocation (LDA) have recently become popular for solving several image content analysis tasks. In this work we will use a pLSA model to represent images for performing scene classification. We evaluate the influence of the type of local feature descriptor in this context and compare three different descriptors. Moreover we also examine three different local interest region detectors with respect to their suitability for this task. Our results show that two examined local descriptors, the geometric blur and the self-similarity feature, outperform the commonly used SIFT descriptor by a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hofmann, T.: Unsupervised learning by probabilistic Latent Semantic Analysis. Mach. Learn. 42(1-2), 177–196 (2001)

    Article  MATH  Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    Article  MATH  Google Scholar 

  3. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: CVPR, pp. 524–531 (2005)

    Google Scholar 

  4. Bosch, A., Zisserman, A., Munoz, X.: Scene classification via pLSA. In: ECCV (2006)

    Google Scholar 

  5. Quelhas, P., Monay, F., Odobez, J.-M., Gatica-Perez, D., Tuytelaars, T., van Gool, L.: Modeling scenes with local descriptors and latent aspects. In: ICCV, pp. 883–890 (2005)

    Google Scholar 

  6. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their location in images. In: ICCV (2005)

    Google Scholar 

  7. Cao, L., Fei-Fei, L.: Spatially coherent latent topic models for concurrent object segmentation and classification. In: ICCV (2007)

    Google Scholar 

  8. Barnard, K., Duygulu, P., de Freitas, N., Forsyth, D., Blei, D., Jordan, M.: Matching words and pictures. J. Mach. Learn. Res. 3, 1107–1135 (2003)

    Article  MATH  Google Scholar 

  9. Lienhart, R., Slaney, M.: pLSA on large scale image databases. In: ICASSP (2007)

    Google Scholar 

  10. Hörster, E., Lienhart, R., Slaney, M.: Image retrieval on large-scale image databases. ACM CIVR, 17-24 (2007)

    Google Scholar 

  11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape context. PAMI 2(4), 509–522 (2002)

    Google Scholar 

  13. Berg, C.A., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: CVPR (2005)

    Google Scholar 

  14. Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: CVPR (2007)

    Google Scholar 

  15. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. PAMI 27(10), 1615–1630

    Google Scholar 

  16. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Loyal Statistical Society B.39 (1977)

    Google Scholar 

  17. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI 26(5), 530–549 (2004)

    Google Scholar 

  18. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV 42, 145–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerhard Rigoll

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hörster, E., Greif, T., Lienhart, R., Slaney, M. (2008). Comparing Local Feature Descriptors in pLSA-Based Image Models. In: Rigoll, G. (eds) Pattern Recognition. DAGM 2008. Lecture Notes in Computer Science, vol 5096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69321-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69321-5_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69320-8

  • Online ISBN: 978-3-540-69321-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics