Abstract
Probabilistic models with hidden variables such as probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allocation (LDA) have recently become popular for solving several image content analysis tasks. In this work we will use a pLSA model to represent images for performing scene classification. We evaluate the influence of the type of local feature descriptor in this context and compare three different descriptors. Moreover we also examine three different local interest region detectors with respect to their suitability for this task. Our results show that two examined local descriptors, the geometric blur and the self-similarity feature, outperform the commonly used SIFT descriptor by a large margin.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hofmann, T.: Unsupervised learning by probabilistic Latent Semantic Analysis. Mach. Learn. 42(1-2), 177–196 (2001)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: CVPR, pp. 524–531 (2005)
Bosch, A., Zisserman, A., Munoz, X.: Scene classification via pLSA. In: ECCV (2006)
Quelhas, P., Monay, F., Odobez, J.-M., Gatica-Perez, D., Tuytelaars, T., van Gool, L.: Modeling scenes with local descriptors and latent aspects. In: ICCV, pp. 883–890 (2005)
Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their location in images. In: ICCV (2005)
Cao, L., Fei-Fei, L.: Spatially coherent latent topic models for concurrent object segmentation and classification. In: ICCV (2007)
Barnard, K., Duygulu, P., de Freitas, N., Forsyth, D., Blei, D., Jordan, M.: Matching words and pictures. J. Mach. Learn. Res. 3, 1107–1135 (2003)
Lienhart, R., Slaney, M.: pLSA on large scale image databases. In: ICASSP (2007)
Hörster, E., Lienhart, R., Slaney, M.: Image retrieval on large-scale image databases. ACM CIVR, 17-24 (2007)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape context. PAMI 2(4), 509–522 (2002)
Berg, C.A., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: CVPR (2005)
Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: CVPR (2007)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. PAMI 27(10), 1615–1630
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Loyal Statistical Society B.39 (1977)
Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI 26(5), 530–549 (2004)
Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV 42, 145–175
Author information
Authors and Affiliations
Editor information
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hörster, E., Greif, T., Lienhart, R., Slaney, M. (2008). Comparing Local Feature Descriptors in pLSA-Based Image Models. In: Rigoll, G. (eds) Pattern Recognition. DAGM 2008. Lecture Notes in Computer Science, vol 5096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69321-5_45
Download citation
DOI: https://doi.org/10.1007/978-3-540-69321-5_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69320-8
Online ISBN: 978-3-540-69321-5
eBook Packages: Computer ScienceComputer Science (R0)