Skip to main content

Non-preemptive Coordination Mechanisms for Identical Machine Scheduling Games

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5058))

  • 689 Accesses

Abstract

We study coordination mechanisms for scheduling n selfish tasks on m identical parallel machines and we focus on the price of anarchy of non-preemptive coordination mechanisms, i.e., mechanisms whose local policies do not delay or preempt tasks. We prove that the price of anarchy of every non-preemptive coordination mechanism for m > 2 is \(\Omega(\frac{\log \log m}{\log \log \log m})\), while for m = 2, we prove a \(\frac{7}{6}\) lower bound. Our lower bounds indicate that it is impossible to produce a non-preemptive coordination mechanism that improves on the currently best known price of anarchy for identical machine scheduling, which is \(\frac{4}{3}-\frac{1}{3m}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angel, E., Bampis, E., Pascual, F.: Truthful Algorithms for Scheduling Selfish Tasks on Parallel Machines. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Awerbuch, B., Azar, Y., Richter, Y.: Analysis of worst case Nash equilibria for restricted assignment (Manuscript 2002)

    Google Scholar 

  3. Azar, Y., Jain, K., Mirrokni, V. (Almost) Optimal Coordination Mechanisms for Unrelated Machine Scheduling. In: SODA (2008)

    Google Scholar 

  4. Bagchi, A.: Stackelberg differential games in economic models. Lecture Notes in Control and Information Sciences, vol. 64. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  5. Beckmann, M., McGuire, C.B., Winstein, C.B.: Studies in the Economics of Transportation. Yale University Press (1956)

    Google Scholar 

  6. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142. Springer, Heidelberg (2004)

    Google Scholar 

  7. Cole, R., Dodis, Y., Roughgarden, T.: How much can taxes help selfish routing? In: ACM EC (2003)

    Google Scholar 

  8. Czumaj, A.: Selfish routing on the Internet. In: Handbook of Scheduling: Algorithms, Models, and Performance Analysis (2004)

    Google Scholar 

  9. Czumaj, A., Vocking, B.: Tight bounds for worst-case equilibria. In: SODA (2002)

    Google Scholar 

  10. Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in multicommodity networks and generalized congestion games. In: FOCS (2004)

    Google Scholar 

  11. Immorlica, N., Li, L., Mirrokni, V., Schulz, A.: Coordination mechanisms for selfish scheduling. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828. Springer, Heidelberg (2005)

    Google Scholar 

  12. Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving network optima using Stackelberg routing strategies. IEEE/ACM Transactions on Networking (1997)

    Google Scholar 

  13. Koutsoupias, E.: Coordination mechanisms for congestion games. Sigact News (December 2004)

    Google Scholar 

  14. Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilibria and ball fusion. In: SIROCCO (2002)

    Google Scholar 

  15. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Mavronicolas, M., Spirakis, P.: The price of selfish routing. In: STOC (2001)

    Google Scholar 

  17. Nash, J.F.: Non-cooperative Games. Annals of Mathematics (1951)

    Google Scholar 

  18. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Behavior 35, 166–196 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  20. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cambridge (1994)

    Google Scholar 

  21. Papadimitriou, C.H.: Algorithms, games, and the Internet. In: STOC (2001)

    Google Scholar 

  22. Roughgarden, T.: Stackelberg scheduling strategies. In: STOC (2001)

    Google Scholar 

  23. von Stackelberg, H.: Marktform und Gleichgewicht. English translation entitled The Theory of the Market Economy. Springer, Heidelberg (1934)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander A. Shvartsman Pascal Felber

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kollias, K. (2008). Non-preemptive Coordination Mechanisms for Identical Machine Scheduling Games. In: Shvartsman, A.A., Felber, P. (eds) Structural Information and Communication Complexity. SIROCCO 2008. Lecture Notes in Computer Science, vol 5058. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69355-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69355-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69326-0

  • Online ISBN: 978-3-540-69355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics