Skip to main content

Effective Dimensions and Relative Frequencies

  • Conference paper
Logic and Theory of Algorithms (CiE 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5028))

Included in the following conference series:

  • 1018 Accesses

Abstract

Consider the problem of calculating the fractal dimension of a set X consisting of all infinite sequences S over a finite alphabet Σ that satisfy some given condition P on the asymptotic frequencies with which various symbols from Σ appear in S. Solutions to this problem are known in cases where

(i) the fractal dimension is classical (Hausdorff or packing dimension), or

(ii) the fractal dimension is effective (even finite-state) and the condition P completely specifies an empirical distribution π over Σ, i.e., a limiting frequency of occurrence for every symbol in Σ.

In this paper we show how to calculate the finite-state dimension (equivalently, the finite-state compressibility) of such a set X when the condition P only imposes partial constraints on the limiting frequencies of symbols. Our results automatically extend to less restrictive effective fractal dimensions (e.g., polynomial-time, computable, and constructive dimensions), and they have the classical results (i) as immediate corollaries. Our methods are nevertheless elementary and, in most cases, simpler than those by which the classical results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension, algorithmic information, and computational complexity. SIAM Journal on Computing 37, 671–705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barreira, L., Saussol, B., Schmeling, J.: Distribution of frequencies of digits via multifractal analyais. Journal of Number Theory 97(2), 410–438 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Besicovitch, A.S.: On the sum of digits of real numbers represented in the dyadic system. Mathematische Annalen 110, 321–330 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cajar, H.: Billingsley dimension in probability spaces. Lecture notes in mathematics, vol. 892 (1981)

    Google Scholar 

  5. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Inc., New York (1991)

    MATH  Google Scholar 

  6. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theoretical Computer Science 310, 1–33 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eggleston, H.: The fractional dimension of a set defined by decimal properties. Quarterly Journal of Mathematics 20, 31–36 (1949)

    Article  MathSciNet  Google Scholar 

  8. Falconer, K.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  9. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, Chichester (2003)

    MATH  Google Scholar 

  10. Good, I.J.: The fractional dimensional theory of continued fractions. In: Proceedings of the Cambridge Philosophical Society, vol. 37, pp. 199–228 (1941)

    Google Scholar 

  11. Gu, X.: A note on dimensions of polynomial size circuits. Theoretical Computer Science 359(1-3), 176–187 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gu, X., Lutz, J.H., Moser, P.: Dimensions of Copeland-Erdős sequences. Information and Computation 205(9), 1317–1333 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hausdorff, F.: Dimension und äusseres Mass. Mathematische Annalen 79, 157–179 (1919)

    Article  MathSciNet  Google Scholar 

  14. Hitchcock, J.M.: Fractal dimension and logarithmic loss unpredictability. Theoretical Computer Science 304(1–3), 431–441 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Huffman, D.A.: A method for the construction of minimum redundancy codes. In: Proc. IRE, vol. 40, pp. 1098–1101 (1952)

    Google Scholar 

  16. Kelly, J.: A new interpretation of information rate. Bell Systems Technical Journal 35, 917–926 (1956)

    Google Scholar 

  17. Lutz, J.H.: Gales and the constructive dimension of individual sequences. In: Proceedings of the 27th International Colloquium on Automata, Languages, and Programming, pp. 902–913 (2000); Revised as [19]

    Google Scholar 

  18. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32, 1236–1259 (2003); Preliminary version appeared In: Proceedings of the Fifteenth Annual IEEE Conference on Computational Complexity, pp. 158–169 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lutz, J.H.: The dimensions of individual strings and sequences. Information and Computation 187, 49–79 (2003); Preliminary version appeared as [17]

    Article  MATH  MathSciNet  Google Scholar 

  20. McMullen, C.T.: Hausdorff dimension of general Sierpinski carpets. Nagoya Mathematical Journal 96, 1–9 (1984)

    MATH  MathSciNet  Google Scholar 

  21. Olsen, L.: Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. Journal de Mathématiques Pures et Appliquées. Neuvième Série 82(12), 1591–1649 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Olsen, L.: Applications of multifractal divergence points to some sets of d-tuples of numbers defined by their n-adic expansion. Bulletin des Sciences Mathématiques 128(4), 265–289 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Olsen, L.: Applications of divergence points to local dimension functions of subsets of ℝd. Proceedings of the Edinburgh Mathematical Society 48, 213–218 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Olsen, L.: Multifractal analysis of divergence points of the deformed measure theoretical Birkhoff averages. III. Aequationes Mathematicae 71(1-2), 29–53 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Olsen, L., Winter, S.: Multifractal analysis of divergence points of the deformed measure theoretical Birkhoff averages II (preprint, 2001)

    Google Scholar 

  26. Olsen, L., Winter, S.: Normal and non-normal points of self-similar sets and divergence points of self-similar measures. Journal of the London Mathematical Society (Second Series) 67(1), 103–122 (2003)

    MATH  MathSciNet  Google Scholar 

  27. Ryabko, B., Suzuki, J., Topsoe, F.: Hausdorff dimension as a new dimension in source coding and predicting. In: 1999 IEEE Information Theory Workshop, pp. 66–68 (1999)

    Google Scholar 

  28. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

  29. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Mathematica 153, 259–277 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tricot, C.: Two definitions of fractional dimension. Mathematical Proceedings of the Cambridge Philosophical Society 91, 57–74 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  31. Volkmann, B.: Über Hausdorffsche Dimensionen von Mengen, die durch Zifferneigenschaften charakterisiert sind. VI. Mathematische Zeitschrift 68, 439–449 (1958)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnold Beckmann Costas Dimitracopoulos Benedikt Löwe

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gu, X., Lutz, J.H. (2008). Effective Dimensions and Relative Frequencies. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds) Logic and Theory of Algorithms. CiE 2008. Lecture Notes in Computer Science, vol 5028. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69407-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69407-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69405-2

  • Online ISBN: 978-3-540-69407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics