Skip to main content

The Quantum Complexity of Markov Chain Monte Carlo

  • Conference paper
Logic and Theory of Algorithms (CiE 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5028))

Included in the following conference series:

  • 1101 Accesses

Abstract

Markov chain Monte Carlo (MCMC) is the widely-used classical method of random sampling from a probability distribution π by simulating a Markov chain which “mixes” to π at equilibrium. Despite the success quantum walks have been shown to have in speeding up random walk algorithms for search problems (“hitting”) and simulated annealing, it remains to prove a general speedup theorem for MCMC sampling algorithms. We review the progress toward this end, in particular using decoherent quantum walks.

This material is based upon work supported by the National Science Foundation under Grant No. 0523866 and is adapted in part from the author’s PhD thesis at Rutgers University [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richter, P.: Quantum walks and ground state problems. PhD thesis, Rutgers University (2007)

    Google Scholar 

  2. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proc. IEEE FOCS, pp. 32–41 (2004)

    Google Scholar 

  3. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Nayak, A., Vishwanath, A.: Quantum walk on the line. DIMACS TR 2000-43. quant-ph/0010117

    Google Scholar 

  5. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proc. ACM STOC, pp. 37–49 (2001)

    Google Scholar 

  6. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proc. ACM STOC, pp. 50–59 (2001)

    Google Scholar 

  7. Lovász, L.: Random walks on graphs: a survey. In: Combinatorics: Paul Erdos is Eighty, Bolyai Society (1993)

    Google Scholar 

  8. Aldous, D.: Some inequalities for reversible Markov chains. J. Lond. Math. Soc. 25(2), 564–576 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Diaconis, P., Strook, D.: Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1, 36–61 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sinclair, A.: Improved bounds for mixing rates of Markov chains and multicommodity flow. Combin. Probab. Comput. 1, 351–370 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Somma, R., Boixo, S., Barnum, H.: Quantum simulated annealing. arXiv:0712.1008 [quant-ph] (2007)

    Google Scholar 

  12. Watrous, J.: Quantum simulations of classical random walks and undirected graph connectivity. J. Comput. System Sci. 62(2), 376–391 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)

    Article  MathSciNet  Google Scholar 

  14. Childs, A., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1, 35 (2002)

    Article  MathSciNet  Google Scholar 

  15. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation. SIAM J. Comput. 37(1), 47–82 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    Article  Google Scholar 

  17. Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Statist. Phys. 85, 551–574 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Meyer, D.: On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A 223(5), 337–340 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ambainis, A.: Quantum walks and their algorithmic applications. Internat. J. Quantum Inf. 1, 507–518 (2003)

    Article  MATH  Google Scholar 

  20. Kempe, J.: Quantum random walks – an introductory overview. Contemporary Physics 44(4), 307–327 (2003)

    Article  MathSciNet  Google Scholar 

  21. Kendon, V.: Decoherence in quantum walks – a review. quant-ph/0606016

    Google Scholar 

  22. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: Proc. ACM STOC, pp. 575–584 (2007)

    Google Scholar 

  23. Moore, C., Russell, A.: Quantum walks on the hypercube. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 164–178. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Spielman, D.: Lecture notes for Spectral Graph Theory and its Applications (Yale University) (Fall 2004)

    Google Scholar 

  25. Childs, A.: Quantum information processing in continuous time. PhD thesis, Massachusetts Institute of Technology (2004)

    Google Scholar 

  26. Gerhardt, H., Watrous, J.: Continuous-time quantum walks on the symmetric group. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 290–301. Springer, Heidelberg (2003)

    Google Scholar 

  27. Kendon, V., Tregenna, B.: Decoherence can be useful in quantum walks. Phys. Rev. A 67, 042315 (2003)

    Article  Google Scholar 

  28. Fedichkin, L., Solenov, D., Tamon, C.: Mixing and decoherence in continuous-time quantum walks on cycles. Quantum Inf. Comput. 6, 263–276 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Solenov, D., Fedichkin, L.: Continuous-time quantum walks on a cycle graph. Phys. Rev. A 73, 012313 (2006)

    Article  MathSciNet  Google Scholar 

  30. Solenov, D., Fedichkin, L.: Non-unitary quantum walks on hyper-cycles. Phys. Rev. A 73, 012308 (2006)

    Article  MathSciNet  Google Scholar 

  31. Richter, P.: Quantum speedup of classical mixing processes. Phys. Rev. A 76, 042306 (2007)

    Article  Google Scholar 

  32. Alagic, G., Russell, A.: Decoherence in quantum walks on the hypercube. Phys. Rev. A 72, 062304 (2005)

    Article  Google Scholar 

  33. Richter, P.: Almost uniform sampling via quantum walks. New J. Phys. 9(72) (2007)

    Google Scholar 

  34. Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks. Phys. Rev. A 69, 052323 (2004)

    Article  Google Scholar 

  35. Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5(83) (2003)

    Google Scholar 

  36. Mackay, T., Bartlett, S., Stephenson, L., Sanders, B.: Quantum walks in higher dimensions. J. Phys. A 35, 2745 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnold Beckmann Costas Dimitracopoulos Benedikt Löwe

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richter, P.C. (2008). The Quantum Complexity of Markov Chain Monte Carlo. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds) Logic and Theory of Algorithms. CiE 2008. Lecture Notes in Computer Science, vol 5028. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69407-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69407-6_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69405-2

  • Online ISBN: 978-3-540-69407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics