Skip to main content

RAM: Randomized Approximate Graph Mining

  • Conference paper
Scientific and Statistical Database Management (SSDBM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5069))

Abstract

We propose a definition for frequent approximate patterns in order to model important subgraphs in a graph database with incomplete or inaccurate information. By our definition, frequent approximate patterns possess three main properties: possible absence of exact match, maximal representation, and the Apriori Property. Since approximation increases the number of frequent patterns, we present a novel randomized algorithm (called RAM) using feature retrieval. A large number of real and synthetic data sets are used to demonstrate the effectiveness and efficiency of the frequent approximate graph pattern model and the RAM algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, J., Chaudhuri, A., Rothberg, J., Chant, J.: Gaining confidence in high-throughput protein interaction networks. Nature Biotechnology 22(1), 78–85 (2004)

    Article  Google Scholar 

  2. Chang, R., Podgurski, A., Yang, J.: Finding What’s not there: a new approach to revealing neglected conditions in software. In: Proc. of ISSTA (2007)

    Google Scholar 

  3. Cong, G., Yi, L., Liu, B., Wang, K.: Discovering frequent substructures from hierarchical semi-structured data. In: Proc of SDM (2002)

    Google Scholar 

  4. Gunopulos, D., Mannila, H., Saluja, S.: Discovering All Most Specific Sentences by Randomized Algorithms Source. LNCS 1997(1997)

    Google Scholar 

  5. Hasan, M., Chaoji, V., Salem, S., Besson, J., Zaki, M.: ORIGAMI: Mining Representative Orthogonal Graph Patterns. In: Perner, P. (ed.) ICDM 2007. LNCS (LNAI), vol. 4597. Springer, Heidelberg (2007)

    Google Scholar 

  6. Holder, L., Cook, D., Djoko, S.: Substructure discovery in the subdue system. In: Proc. AAAI (1994)

    Google Scholar 

  7. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the presence of isomorphism. In: Proc. of ICDM (2003)

    Google Scholar 

  8. Huan, J., Wang, W., Prins, J., Yang, J.: SPIN: mining maximal frequent subgraphs from graph databases. In: Proc. of KDD (2004)

    Google Scholar 

  9. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Proceedings of PDKK (2000)

    Google Scholar 

  10. Koyuturk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detecting frequent subgraphs in bioloical networks. Bionformatics 20, 200–207 (2004)

    Article  Google Scholar 

  11. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proc. of ICDE (2001)

    Google Scholar 

  12. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph. Data Min. Knowl. Discov. (2005)

    Google Scholar 

  13. Nijssen, S., Kok, J.: A quickstart in frequent structure mining can make a difference. In: Proc of KDD (2004)

    Google Scholar 

  14. Pei, J., Jiang, D., Zhang, A.: On Mining Cross-Graph Quasi-Cliques. In: Proc. of KDD (2005)

    Google Scholar 

  15. Park, J., Chen, M., Yu, P.: An effective hash based algorithm for mining association rules. In: Proc. SIGMOD, pp. 175–186 (1995)

    Google Scholar 

  16. Thomas, L., Valluri, S., Karlapalem, K.: MARGIN:Maximal Frequent Subgraph Mining. In: Proc. of ICDM (2006)

    Google Scholar 

  17. Yan, X., Han, J.: CloseGraph: Mining closed frequent graph patterns. In: Proc. of SIGKDD (2003)

    Google Scholar 

  18. Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: Proc. of ICDM (2002)

    Google Scholar 

  19. Yan, X., Yu, P., Han, J.: Substructure similarity search in graph databases. In: Proc. of SIGMOD (2005)

    Google Scholar 

  20. Liu, J., Paulsen, S., Xu, X., Wang, W., Nobel, A., Prins, J.: Mining approximate frequent itemset from noisy data. In: ICDM (2005)

    Google Scholar 

  21. Zaki, M.: Efficiently mining frequent trees in a forest: algorithms and applications. In: IEEE TKDE (2005)

    Google Scholar 

  22. Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/

  23. Metabolic pathway categories in KEGG, http://www.kegg.com/kegg/pathway/map/map01100.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bertram Ludäscher Nikos Mamoulis

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, S., Yang, J. (2008). RAM: Randomized Approximate Graph Mining. In: Ludäscher, B., Mamoulis, N. (eds) Scientific and Statistical Database Management. SSDBM 2008. Lecture Notes in Computer Science, vol 5069. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69497-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69497-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69476-2

  • Online ISBN: 978-3-540-69497-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics