Abstract
We study Dickson bases for binary field representation. Such a representation seems interesting when no optimal normal basis exists for the field. We express the product of two elements as Toeplitz or Hankel matrix vector product. This provides a parallel multiplier which is subquadratic in space and logarithmic in time.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ansari, B., Anwar Hasan, M.: Revisiting finite field multiplication using dickson bases. Technical report, University of Waterloo, Ontario, Canada (2007)
Dickson, L.E.: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Ann. of Math. 11, 161–183 (1883)
Fan, H., Hasan, M.A.: A new approach to sub-quadratic space complexity parallel multipliers for extended binary fields. IEEE Trans. Computers 56(2), 224–233 (2007)
Fan, H., Hasan, M.A.: Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases. In: IEEE Trans. Computers (2008)
Giorgi, P., Negre, C., Plantard, T.: Subquadratic binary field multiplier in double polynomial system. In: SECRYPT 2007, Barcelona, Spain (2007)
Lild, R., Mullen, G.L., Turnwald, G.: Dickson Polynomials. Pitman Monograpah and Survey n Pure and Applied Mathematic, vol. 65 (1993)
Mullin, R.C., Mahalanobis, A.: Dickson bases and finite fields. Technical report, Universite of Waterloo, Ontario (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hasan, M.A., Negre, C. (2008). Subquadratic Space Complexity Multiplication over Binary Fields with Dickson Polynomial Representation. In: von zur Gathen, J., Imaña, J.L., Koç, Ç.K. (eds) Arithmetic of Finite Fields. WAIFI 2008. Lecture Notes in Computer Science, vol 5130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69499-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-69499-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69498-4
Online ISBN: 978-3-540-69499-1
eBook Packages: Computer ScienceComputer Science (R0)