
Predicting Software Metrics at Design Time

Wolfgang Holz1, Rahul Premraj1, Thomas Zimmermann2, and Andreas Zeller1

1 Saarland University, Germany, {holz, premraj, zeller}@st.cs.uni-sb.de
2 University of Calgary, Canada, tz@acm

Abstract. How do problem domains impact software features? We mine soft-
ware code bases to relate problem domains (characterized by imports) to code
features such as complexity, size, or quality. The resulting predictors take the
specific imports of a component and predict its size, complexity, and quality
metrics. In an experiment involving 89 plug-ins of the ECLIPSE project, we
found good prediction accuracy for most metrics. Since the predictors rely only
on import relationships, and since these are available at design time, our ap-
proach allows for early estimation of crucial software metrics.

1 Introduction

Estimating the cost (or size) for a software project is still a huge challenge for project
managers—in particular because the estimation typically is done at a stage where only
few features of the final product are known. To date, several models have been pro-
posed to improve estimation accuracy [1], but none have performed consistently well.
Moreover, although a lot of emphasis is laid upon early estimation of development
costs, the parameters used by many models are not known until much later in the
development cycle [2]—that is, at a stage when prediction is both trivial and worth-
less.

In this work, we show how to reliably predict code metrics that serve as inputs (in-
cluding software size) to prediction models very early on in the project by learning
from existing code. We leverage the problem domain of the software to predict these
metrics. The problem domain manifests itself in import relationships—that is, how
individual components rely on each other’s services. In earlier work, it has been
shown that a problem domain, as characterized by imports, impacts the likelihood of
software defects [3] or vulnerabilities [4].

Our approach is sketched in Figure 1. We train a learner from pairs of imports and
code metrics, as found in existing software. The resulting predictor takes the set of
imports for a component (as available in the design phase) and predicts metrics for the
component. Managers can then use the predicted metrics as a basis to make other
decisions, such as: What will this product cost to develop? How many people should I
allocate to the project? Will this product have several defects to be fixed?

This paper makes the following contributions:

1. We present a novel software size estimation method during the design phase of
development.

2. Using the ECLIPSE code base, we show how imports can be used to predict soft-
ware size, given as source lines of code (SLOC) [5].

3. Using the ECLIPSE code base, we show how to predict software complexity, as
defined by the widely used object-oriented ckjm software metrics [6].

We expect that advance reliable knowledge of such product-specific metrics can be a
boon to solving several management issues that constantly loom over all types of
development projects at an early stage.

This paper is organized as follows. In Section 2, we discuss features and shortcom-
ings of contemporary cost estimation models. The data used for our experimentation
is elaborated upon in Section 3. Thereafter, we present our experimental setup in
Section 4, which is followed by results and discussions in Section 5. Threats to valid-
ity are addressed in Section 6 and lastly, we conclude our work in Section 7.

Fig. 1. Approach overview. By learning from the relationship between imports and metrics in
existing code, we can predict metrics based on imports alone.

2 Background

As discussed above, cost estimation is vital to a successful outcome of a software
project. But most contemporary estimation models depend upon characteristics of the
software that are typically unknown at start. For example, many models take into
account the relationship between software size and cost. Examples include algo-
rithmic models such as COCOMO [7] and Putnam [8], regression models [9] and
analogy-based models [10–13]. To use these models, first an estimate of the size of
the project is needed. Again, size is unknown at start of the project and can only be
estimated based on other characteristics of the software. Hence, basing cost estimates
on an estimate of size adds to uncertainty of the estimates and fate of the project. This
challenges the value of such models.

We propose a novel approach that, in contrast to others, focusses on estimating the
size of a component with as little knowledge as its design. This places managers at a
unique position from where they can choose between several alternatives to optimize
not only size, but also other metrics of the software that serve as its quality indicators.
We present these metrics in more detail in the following section.

3 Data Collection

We used 89 core plug-ins from the ECLIPSE project as data source for our study.
Core plug-ins are those that are installed by default in ECLIPSE. We used both source
code and binaries to extract the data necessary to build prediction models. In this
section, we describe the metrics extracted and the methods employed for their extrac-
tion. The metrics or features can be grouped into two categories; first, input features,
i.e., the features that are already known to us, and second, output features, which we
wish to predict.

3.1 Input Features

As mentioned above, we hypothesize that the domain of the software determines
many of its metrics, for instance, defects—a quality indicator. Similar to Schröter et
al. [3], we assume that the import directives in source code indicate the domain of the
software.

Naturally, our first task is to establish the domains of the 89 ECLIPSE plug-ins,
i.e., extract all import directives from the relevant code. At first, this task seems trivial
because one can quickly glance through JAVA source code to find the import direc-
tives at the top of the file.

However, this task becomes very complex when one encounters a situation as illus-
trated in Figure 2. Here, the import directive in Label 1 contains reference to package
import java.sql.* instead of classes. Later, in Label 2, objects of classes
Connection and Statement belonging to the java.sql package have been
instantiated.

It is crucial that such references to packages are resolved to class levels; else we
run the risk of leading statistical learning models astray. To accomplish this, we used
the Eclipse ASTParser [14] that transforms JAVA code into a tree form, where the
code is represented as AST nodes (subclasses of ASTNode). Each element in JAVA
code has an associated, specialised AST node that stores relevant information items.
For example, a node SimpleType contains the name, return type, parameters, and like.
Further information to examine the program structure more deeply is allowed by
bindings, a provision in ASTParser. It is these bindings that resolve import packages
into the relevant classes. Figure 2 demonstrates this where the two classes referred to
in Label 2 get resolved by the ASTParser as java.sql.Connection (Label 3)
and java.sql.Statement (Label 4) respectively.

Using the above method, we extracted 14,185 unique and resolved import state-
ments from the 89 ECLIPSE plug-ins used in this study.

3.2 Output Features

As mentioned earlier, the knowledge of as many product-specific metrics early in the
project’s life cycle has several advantages. We demonstrate our model’s capacity to
predict such metrics on a set of commonly known and used in the software develop-
ment community.

Fig. 2. An illustration of the use of the ASTParser to resolve import directives.

Source Lines of Code (SLOC). The count of lines of code is the simplest measure of
the system size. Early estimate of SLOC or a similar size measure can substantially
influence management and execution of the project: development costs and duration
of the project can be estimated, system requirements can be inferred, required team
size can be appropriated, and like.

Many definitions for counting SLOC have been proposed. We implemented a tool
to count SLOC abiding the guidelines laid by Wheeler [5]. As Wheeler recommends,
we count the physical lines of code, which is defined as follows:

A physical SLOC is a line ending in a new line or end-of-file marker, and which
contains at least one non-whitespace non-comment character.

Object-Oriented (OO) Metrics. Our second output feature is a set of OO metrics,
referred to as ckjm metrics defined by Chidamber and Kemerer [6]. The ckjm tool
computes six different metrics, summarised in Table 1. These metrics have previously
been used to predict fault-proneness of classes [15], changes in short-cycled devel-
opment projects using agile processes [16], system size [17, 18], and as software
quality indicators [19–21].

Table 1. List of ckjm Metrics

Abbreviation Metric
CA Afferent Couplings
CBO Coupling between Class Objects
CBOJDK* Java specific CBO
DIT Depth of Inheritance Tree
NOC Number of Children
NPM Number of Public Methods
LCOM Lack of Cohesion in Methods
RFC Response for a Class
WMC Weighted Methods per Class
* In this metric, Java JDK classes (java.*, javax.*, and others) are in-
cluded. We created a new metric because the use of JDK classes does not
count toward a class’s coupling because the classes are relatively stable in
comparison to the rest of the project.

While the ckjm metrics have been shown to be useful predictors of a variety of soft-
ware characteristics, a downside of their usage is that substantial parts of the code
have to be written to reliably compute them. At this juncture, when code is reasonably
mature, the value of such predictions is diminished, i.e., the new knowledge arrives
too late in the product’s life cycle. Our research alleviates this problem by predicting
the ckjm metrics for classes at a very early stage of the life cycle. Endowed with pre-
dicted values of the ckjm metrics, project managers can make further predictions of
software characteristics based on these values.

In Table 2, we present some summary statistics of the output features. The values
suggest that most metrics are highly skewed. DIT is somewhat flat and most classes
have no children (NOC), similar to the finding by Chidamber and Kemerer [6]. In
fact, almost 84% of the classes had no children. Particularly noticeable is the fact that
many metrics have extreme outliers, for example maximum value of LCOM is
329,563.

Table 2. Summary Statistics of Output Features

Metric Min Max Median Mean Std. Dev
CA 0 588 2 5.40 5.23
CBO 0 212 9 13.86 16.15
CBOJDK 2 223 15 20.40 18.56
DIT 1 8 1 1.67 1.05
NOC 0 82 0 0.47 2.03
NPM 0 834 4 7.13 13.26
LCOM 0 329,563 9 164.10 3200.28
RFC 0 848 24 39.46 48.96
SLOC 3 7645 72 146.70 273.64
WMC 0 835 7 12.02 18.06

Fig. 3. Data format for experimentation

3.3 Data Format

After the data has been extracted, we have to shape it as feature vectors to be fed into
statistical learning models. Each file is represented as a single row. The input features,
that is, the imported classes are represented as dummies. This is illustrated in Figure 3
where each of the 14,185 import directives is represented as one column. To indicate
that a file imports a class, the value of the respective cell is set to 1, while otherwise it
is set to zero. The eleven output features (SLOC and ckjm metrics) are represented as
columns too alongside the input features. As a result, we have a large matrix with
11,958 rows (files) and 14,196 columns (filename + input features + output features).

4 Experimental Setup

This section elaborates upon the experiments we performed. We begin with describ-
ing the prediction model, our training and test sets and lastly, the evaluation for the
model performance.

4.1 Support Vector Machine

Support vector machine (SVM) is primarily a supervised classification algorithm that
can learn to separate data into two classes by drawing a hyper-plane in-between them.
The coordinates of the hyper-plane are determined by ensuring maximum distance
between select boundary points of the two classes and the center of the margin. The
boundary points are called support vectors. The algorithm uses an implicit mapping of
the input data to a high-dimensional feature space where the data points become line-
arly separable. This mapping is defined by a kernel function, i.e., a function returning
the inner product between two points in the suitable feature space.

Recently, SVM has been upgraded to even perform regression. This is done by us-
ing a different kernel function—the ε-insensitive loss function. Basically, this func-
tion determines the regression coefficients by ensuring that the estimation errors lie
below or equal to a threshold value, ε. For more information, we refer the reader to a
tutorial on the topic [22].

Besides the kernel function, it is also possible to choose the SVM’s kernel. In a pi-
lot study (predicting SLOC), we found that the linear kernel overwhelmingly outper-
forms other kernels including polynomial, radial bias, and sigmoid when using the
evaluation criteria presented in Section 4.3. Hence, we chose to use the same kernel
across all our experiments.

4.2 Procedure

The SVM regression model learns using training data instances. For this, we ran-
domly sample 66.67% of the data described in Section 3 to create the training set,
while the remaining instances of the data (33.33%) that comprise the test set. Once
the model is trained on the training data, it is tested on the test data using only the
input features. The output features for the test data are predicted by the model, which
are then evaluated using the measures described in Section 4.3.

Additionally, to minimise sample bias, we generate 30 independent samples of
training and testing sets, and perform our experiments on each of the 30 pairs.

4.3 Evaluation

We evaluate the results from the prediction model using PredX, a popular perform-
ance metric used in software engineering. We chose not to use other performance
metrics such as MMRE because they have been shown to be biased [23]. PredX meas-
ures the percentage of predictions made that lie within ±x% of the actual value. The
larger the value of PredX, the higher is the prediction accuracy. Typically, x takes the
values 25 and 50. We use the same values for our evaluation.

5 Results and Discussion

Figure 4 presents the results from our experiments. All metrics are presented in al-
phabetical order on the y-axis, while the PredX values are plotted on the x-axis. For
each metric, we have plotted both, Pred25 (as circles) and Pred50 values (as trian-
gles) from each of the thirty experimental runs. The plots are jittered [24], i.e., a small
random variation has been introduced to ease observation of overlapping values on
the x-axis.

We observe from the figure that SLOC is predicted with reasonable accuracy.
Pred25 values hover around 42% while Pred50 values hover around 71%. Whereas,
prediction results for CBO and CBOJDK are outstandingly good. The Pred25 values
for CBO hover around 72% and even higher for CBOJDK at 86%. Their Pred50
values hover around 88% and 97% respectively. The model also predicts RFC and
DIT values with reasonable accuracy. The values of Pred25 for both these metrics
hover around 51–54%. Pred50 for DIT hover around 77%, while the same for RFC
hovers around 83%.

The prediction accuracy for other metrics, i.e., CA, LCOM, NOC, and NPM is
relatively lower. Nearly all Pred25 and Pred50 values for most of these metrics are
lower than 50%. One metric that markedly stands out is number of children (NOC).
This is primarily because of the distribution of the metric. Recall from Table 2 that
the median value of NOC is zero and nearly 84% files have no children. This explains
the poor results for NOC.

Overall, the prediction accuracy derived from our approach is good for most met-
rics. It is obvious that early and reliable estimation of SLOC places projects at a van-
tage point by contributing substantially to their likelihood of success. Our results for
SLOC demonstrate the value of our approach. Perhaps, these can be even topped by
using more varied data and other prediction models.

Equally worthy is the approach’s capability of predicting code-related metrics as
early as during the design phase. Values of many of the metrics could be predicted
with high accuracy, up to Pred50 = 97%. The results warrant the use of our approach
to facilitate many decisions pertaining to complexity, quality, and maintainability, and
allow assessment of alternatives designs. If our results can be replicated in different
environments, we anticipate the approach to be valuable support tool for practitioners.

6 Threats to Validity

Although we examined 89 ECLIPSE plug-ins that covered a wide spectrum of do-
mains, from compilers to user-interfaces, we cannot claim with certainty that these
plug-ins are representative of all kinds of software projects.

We also approximated the design of plug-ins by its import directives at release
time. These relations may have undergone a series of changes from the initial design.

Lastly, we did not filter outliers from our data set. While doing so may improve the
prediction accuracy of the models, we chose to preserve the outliers in the data since
they make interesting cases to examine and realistically assess the power of our pre-
diction models.

Fig. 4. Prediction accuracy for output metrics

7 Conclusions and Consequences

When it comes to components, you are what you import. As soon as you know which
components you will interact with, one can already predict the future size of the com-
ponent or its complexity. This allows for early estimation and allocation of resources,
reducing the risk of low quality or late delivery. Even if the present study limits itself
to just one platform (i.e., ECLIPSE plug-ins), the technique can easily be replicated
and evaluated on other code bases.

Our approach is easily generalisable to other metrics. Most interesting in this as-
pect is cost: If we know the actual development cost of a component, we can again
relate this cost to its domain—and come up with a predictor that directly predicts

development cost based on a given set of imports. Instead of development cost, we
could also learn from and predict maintenance costs or risk. We are currently working
to acquire appropriate data and look forward to apply our technique on it.

What is it that makes a specific domain impact software metrics? Obviously, the
imports we are looking at are just a symptom of some underlying complexity—a
complexity we can describe from experience, but which is hard to specify or measure
a priori. Why is it that some domains require more code to achieve a particular goal?
Is there a way to characterize the features that impact effort? Why do some domain
result in more complex code? How do characteristics of imported components impact
the features of the importers?

All these questions indicate that there is a lot of potential to not only come up with
better predictors, but also to increase our general understanding of what makes soft-
ware development easy, and what makes it hard. With the present work, we have
shown how to infer such knowledge for specific projects—and hopefully provided a
starting point for further, more general, investigations.

In addition, we have made the data set used for this study publicly available for ex-
perimentation. The data set can be accessed from the PROMISE repository at

http://promisedata.org/

For more information about our research on the prediction of code features visit
http://www.st.cs.uni-sb.de/softevo/

Acknowledgments.
Many thanks are due to the anonymous PROFES reviewers for their helpful sugges-
tions on an earlier revision of this paper.

References

[1] Jorgensen, M., Shepperd, M.J.: A systematic review of software development cost estima-
tion studies. IEEE Transactions on Software Engineering 33(1) (2007) 33–53

[2] Delany, S.J.: The design of a case representation for early software development cost
estimation. Master’s thesis, Stafford University, U.K. (1998)

[3] Schröter, A., Zimmermann, T., Zeller, A.: Predicting component failures at design time.
In: Proceedings of the 5th International Symposium on Empirical Software Engineering.
(September 2006) 18–27

[4] Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable software com-
ponents. In: Proceedings of the 14th ACM Conference on Computer and Communications
Security. (October 2007)

[5] Wheeler, D.A.: SLOCCount user’s guide. http://www.dwheeler.com/sloccount/sloccount.
html Last accessed 2007-11-23.

[6] Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Transac-
tions on Software Engineering 20(6) (June 1994) 476–493

[7] Boehm, B.: Software Engineering Economics. Prentice Hall (1981)
[8] Putnam, L.H., Myers, W.: Measures for excellence: reliable software on time, within

budget. Yourdon Press, Englewood Cliffs, N.J. (1991)

[9] Mendes, E., Kitchenham, B.A.: Further comparison of cross-company and within-
company effort estimation models for web applications. In: IEEE METRICS, IEEE Com-
puter Society (2004) 348–357

[10] Shepperd, M.J., Schofield, C.: Estimating software project effort using analogies. IEEE
Transactions on Software Engineering 23(11) (1997) 736–743

[11] Kirsopp, C., Mendes, E., Premraj, R., Shepperd, M.J.: An empirical analysis of linear
adaptation techniques for case-based prediction. In Ashley, K.D., Bridge, D.G., eds.:
ICCBR. Volume 2689 of Lecture Notes in Computer Science., Springer (2003) 231–245

[12] Mendes, E., Mosley, N., Counsell, S.: Exploring case-based reasoning for web hypermedia
project cost estimation. International Journal of Web Engineering and Technology 2(1)
(2005) 117–143

[13] Mendes, E.: A comparison of techniques for web effort estimation. In: ESEM, IEEE Com-
puter Society (2007) 334–343

[14] Marques, M.: Eclipse AST Parser. http://www.ibm.com/developerworks/opensource/
library/os-ast/ Last accessed 2008-01-14.

[15] Basili, V., Briand, L., Melo, W.: A validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering 22(10) (October 1996) 751–761

[16] Alshayeb, M., Li, W.: An empirical validation of object-oriented metrics in two different
iterative software processes. IEEE Transations of Software Engineering 29(11) (2003)
1043–1049

[17] Ronchetti, M., Succi, G., Pedrycz, W., Russo, B.: Early estimation of software size in
object-oriented environments: a case study in a CMM level 3 software firm. Technical re-
port, Informatica e Telecomunicazioni, University of Trento (2004)

[18] Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Empirical study of object-oriented
metrics. Journal of Object Technology 5(8) (2006)

[19] Subramanyam, R., Krishnan, M.: Empirical analysis of ck metrics for object-oriented
design complexity: Implications for software defects. IEEE Transactions on Software En-
gineering 29(4) (2003) 297–310

[20] Andersson, M., Vestergren, P.: Object-oriented design quality metrics. Master’s thesis,
Uppsala University, Uppsala, Sweden (June 2004)

[21] Thwin, M.M.T., Quah, T.S.: Application of neural networks for software quality predic-
tion using object-oriented metrics. Journal of Systems and Software 76(2) (2005) 147–156

[22] Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and Comput-
ing 14 (August 2004) 199–222

[23] Foss, T., Stensrud, E., Kitchenham, B., Myrveit, I.: A simulation study of the model
evaluation criterion MMRE. IEEE Transactions on Software Engineering 29(11) (Novem-
ber 2003) 985–995

[24] Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods for Data
Analysis. Wadsworth (1983)

