Skip to main content

A Method for Evaluation of Compromise in Multiple Criteria Problems

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2008 (ICAISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5097))

Included in the following conference series:

  • 1648 Accesses

Abstract

A graphical method for the modeling of compromise in multiple criteria problems solution is proposed. The method is based on the analysis of the strategic games characteristics and takes into account both the players cooperation for the compromise solution searching and the influence of rejection of the better solutions in favor of the compromise ones. The visualization of the considered problem is based on triangle type representation of the local criteria and can be realized both in deterministic and interval or fuzzy versions. The methodology for building the models of compromise based on the comparative analysis of possible solutions is proposed. In comparison with the approaches based the on the polygon method in games theory [32], our proposition is evidently less algorithmic complex and seems as more suitable for the comparative analysis. Its usefulness becomes especially apparent is the case of small number of local criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antonson, E.K., Otto, K.N.: Improving Engineering Design with Fuzzy Sets Department of Mechanical Engineering. MIT Press, Cambridge (1995)

    Google Scholar 

  2. Aumann, R.: Survey of repeated games, Easy in game theory and Mathematical Economics in Honor of Oscar Morgenstern, Institute Mannheim, Vein (1981)

    Google Scholar 

  3. Baas, S.M., Kwakernaak, H.: Rating and Raking of Multiple-Aspects Alternatives Using Fuzzy Sets. Automatica 1, 47–58 (1977)

    Article  MathSciNet  Google Scholar 

  4. Baebera, S., Jackson, M.O.: Choosing of Barbera Jackson model-Stable Majority Rules. In: V Conference SAET, Iscia (2001)

    Google Scholar 

  5. Bawa, V.S.: Optimal Rules for Ordering Uncertain Prospect. Journal of Economic 2, 95–121 (1975)

    Google Scholar 

  6. Best, M.: Fisible Conjugate Direction Method to Solve Linearly Constrained Optimization Problems. Journal of Optimization Theory and Applications 16 (1975)

    Google Scholar 

  7. Brans, J.P., Mareshal, B.: The PromCalc and GAIA decision support system for multicriteria decision aid. Decision Support Systems 12, 297–310 (1994)

    Article  Google Scholar 

  8. Buckley, J.J.: The multiple - judge multiple criteria ranking problem. A fuzzy set approach. Fuzzy Sets and Systems 13, 23–37 (1984)

    Google Scholar 

  9. Bustnce, H., Burillo, P.: Interval valued fuzzy relations in a set structures. J. Fuzzy Math. 4, 765–785 (1996)

    MathSciNet  Google Scholar 

  10. Caprani, O., Madsen, K.: Mean Value Forms in Interval Analysis. Computing 25, 147–154 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Choi, D.Y., Oh, K.W.: Asa and its Application to Multi- criteria Decision Making. Fuzzy sets and Systems 114, 89–102 (2000)

    Article  MATH  Google Scholar 

  12. Chu, A., Kalaba, R., Springarn, R.: A comparition of Two Methods for Determining the Weights Belonging to Fuzzy Sets. Journal of Optimization (1996)

    Google Scholar 

  13. Czogala, E., Perdycz, W.: Elementy i metody teorii zbiorów rozmytych, PWN, Warszawa (1985)

    Google Scholar 

  14. Deluca, A., Termini, S.: A Definition of a nonprobabilistic entropy the of Fuzzy sets theory. Information and Control 20, 301–312 (1972)

    Article  MathSciNet  Google Scholar 

  15. Dubois, D., Koenig, J.L.: Social choise axioms for fuzzy set aggregation. Fuzzy sets and Systems 43, 257–274 (2003)

    Article  Google Scholar 

  16. Eschenauer, H., Kolski, J., Osyczka, A.: Multicriteria Design Optimalization. Springer, Berlin (1990)

    Google Scholar 

  17. Fuller, R., Carlson, C.: Fuzzy Multiple Criteria Decision Making. Fuzzy Sets and Systems 78, 139–153 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hauke, W.: Using Jager’s t-noms for Aggregation of Fuzzy Intervals. Fuzzy sets and Systems 101, 59–65 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hofbauer, J.: Stability for Best Response Dynamic. University of Viena (1995)

    Google Scholar 

  20. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysiss. Springer, London (2001)

    Google Scholar 

  21. Kacprzyk, J.: Wieloetapowe sterowanie rozmyte, WNT, Warszawa (2001)

    Google Scholar 

  22. Kalynmoy, D., Lother, T., Laumans, M., Zitzler, E.: Scalable Multi-objective Opimization Test Problems (2002)

    Google Scholar 

  23. Kaufman, A., Gupta, M.: Introduction to Fuzzy Arithmetic-Theory and applications, p. 349. Van Nostrand Reinhold, New York (1985)

    Google Scholar 

  24. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncerteinty and Information. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  25. Lachwa, A.: Fuzzy world of files, numbers, relations, facts, rules and decisions, Akademicka Oficyna Wydawnicza Exit, Warsaw (in polish) (2001)

    Google Scholar 

  26. Papadimitriou, C.H.: Games against nature. J. Comp.System Sci. 31, 288–301 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  27. Piegat, A.: Fuzzy modelling and controlling. Akademicka Oficyna Wydawnicza Exit, Warsaw (2003) (in polish)

    Google Scholar 

  28. Roy, B.: Wielokryterialne wspomaganie decyzji, WNT, Warszawa (1990)

    Google Scholar 

  29. Straffin, P.D., Gier, T.: Wydawnictwo Naukowe Scholar, Warszawa (2001)

    Google Scholar 

  30. Syslo, M., Deo, N., Kowalik, J.: Discrete optimisation algorithms. PWN, Warsaw (1995) (in polish)

    Google Scholar 

  31. Vavock, V.: Aggregating Strategies. In: Conference on Computational Learning Theory (1990)

    Google Scholar 

  32. Watson, J.: Strategia. Wprowadzenie do teorii gier. WNT, Warszawa (2005)

    Google Scholar 

  33. Wrather, C., Yu, P.L.: Probability Dominance. Journal of Optimization Theory and Application 36 (1982)

    Google Scholar 

  34. Yager, R.: Modeling Uncertainty Using Partial Information. Information Sciences 121, 233–294 (1999)

    Article  MathSciNet  Google Scholar 

  35. Yager, R.: Non Numeric Multicriteria, Multiperson Decision Making. Group Decision and Negotiations 2, 81–93 (1993)

    Article  Google Scholar 

  36. Yager, R.: On the Measure of Fuzziness and Negation, Membership in the Unit Interval. Int. J. Gen. Systems 5, 221–229 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zadeh, L.A.: Fuzzy limitations calculus; design and systems, methodological problems. Ossolineum (1980) (in polish)

    Google Scholar 

  38. Zeleny, M.: Multiple Criteria Decision Making. In: Business Venturing, vol. 7, pp. 505–518. Mc-Grow-Hill, New York (1987)

    Google Scholar 

  39. Zorychta, K., Ogryczak, W.: Programowanie liniowe i cakowitoliczbowe. WNT, Warszawa (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leszek Rutkowski Ryszard Tadeusiewicz Lotfi A. Zadeh Jacek M. Zurada

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piech, H., Figat, P. (2008). A Method for Evaluation of Compromise in Multiple Criteria Problems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_103

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69731-2_103

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69572-1

  • Online ISBN: 978-3-540-69731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics