Abstract
This paper describes an approach of combining Monte Carlo simulation and neural nets. The approach is applied to model transport systems, with the accurate but computationally expensive Monte Carlo simulation used to train a neural net. Once trained the neural net can efficiently provide functional analysis and reliability predictions. No restriction on the system structure and on any kind of distribution is the main advantage of the proposed approach. The paper presents exemplar decision problem solved by proposed approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banks, J., Carson, J.S., Nelson, B.N.: Discrete-Event System Simulation, 2nd edn. Prentice Hall, Upper Saddle River (1996)
Barlow, R., Proschan, F.: Mathematical Theory of Reliability. Society for Industrial and Applied Mathematics, Philadelphia (1996)
Bischop, C.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1996)
Caban, D., Walkowiak, T.: Computer Simulation of Discrete Transport System. XXX Winter School of Reliability, 93–103 (2002)
Fishman: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)
Jarnicki, J., Mazurkiewicz, J., Zamojski, W.: Model of Discrete Transport System. XXX Winter School of Reliability, 149–157 (2002)
Kaplon, K., Mazurkiewicz, J., Walkowiak, T.: Economic Analysis of Discrete Transport Systems. Risk Decision and Policy 8(3), 179–190 (2003)
Mazurkiewicz, J., Walkowiak, T.: Fuzzy Economic Analysis of Simulated Discrete Transport System. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1161–1167. Springer, Heidelberg (2004)
Podofillini, L., Zio, E., Marella, M.: A multi-state Monte Carlo Simulation Model of a Railway Network System. In: Kolowrocki, K. (ed.) Advances in Safety and Reliability, European Safety and Reliability Conference - ESREL 2005, pp. 1567–1575. Taylor & Francis Group, London (2005)
Pozsgai, P., Bertsche, B.: Modeling and Simulation of the Operational Availability and Costs of Complex Systems - a Case Study. In: Kolowrocki, K. (ed.) Advances in Safety and Reliability, European Safety and Reliability Conference - ESREL 2005, pp. 1597–1605. Taylor & Francis Group, London (2005)
Sanso, B., Milot, L.: Performability of a Congested Urban-Transportation Network when Accident Information is Available. Transportation Science 33 (1999)
Walkowiak, T., Mazurkiewicz, J.: Fuzzy Approach to Economic Analysis of Dispatcher Driven Discrete Transport Systems. In: DepCoS-RELCOMEX 2006 International Conference, pp. 366–373. IEEE Press, Poland (2006)
Walkowiak, T., Mazurkiewicz, J.: Genetic Approach to Modeling of a Dispatcher in Discrete Transport Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 479–488. Springer, Heidelberg (2006)
Walkowiak, T., Mazurkiewicz, J.: Hybrid Approach to Reliability and Functional Analysis of Discrete Transport System. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3037, pp. 236–243. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Walkowiak, T., Mazurkiewicz, J. (2008). Neural Network Device for Reliability and Functional Analysis of Discrete Transport System. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)