Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5097))

Included in the following conference series:

  • 1750 Accesses

Abstract

This paper presents type-2 fuzzy decision trees (T2FDTs) that employ type-2 fuzzy sets as values of attributes. A modified fuzzy double clustering algorithm is proposed as a method for generating type-2 fuzzy sets. This method allows to create T2FDTs that are easy to interpret and understand. To illustrate performace of the proposed T2FDTs and in order to compare them with results obtained for type-1 fuzzy decision trees (T1FDTs), two benchmark data sets, available on the internet, have been used.

This work was partly supported by the Foundation for Polish Science (Professorial Grant 2005-2008) and the Polish State Committee for Scientific Research (Grant N518 035 31/3292), Special Research Project 2006-2009, Polish-Singapore Research Project 2008-2010, Research Project 2008-2010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adamo, J.M.: Fuzzy decision trees. Fuzzy Sets and Systems 4, 207–219 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bezdek, C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  3. Bartczuk, Ł., Rutkowska, D.: The new version of Fuzzy-ID3 algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1060–1070. Springer, Heidelberg (2006)

    Google Scholar 

  4. Bartczuk Ł., Rutkowska D., Fuzzy decision trees of type-2, in: Some Aspects of Computer Science. EXIT Academic Publishing House, Warsaw, Poland (2007) (in Polish)

    Google Scholar 

  5. Bilski, J.: The UD RLS algorithm for training feedforward neural networks. International Journal of Applied Mathematics and Computer Science 15(1), 115–123 (2005)

    MATH  Google Scholar 

  6. Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases

    Google Scholar 

  7. Canfora, G., Troiano, L.: Fuzzy ordering of fuzzy numbers. In: Proc. Fuzz-IEEE, Budapest, Ungheria, pp. 669–674 (2004)

    Google Scholar 

  8. Castellano, G., Fanelli, A.M., Mencar, C.: A double-clustering approach for interpretable granulation of data. In: Proc. IEEE International Conference on Systems, Man and Cybernetics, pp. 483–487 (2002)

    Google Scholar 

  9. Czekalski, P.: Evolution-Fuzzy rule based system with parameterized consequences. International Journal of Applied Mathematics and Computer Science 16(3), 373–385 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  11. Haykin, S.: Neural Networks: A Comprehensive Foundation, Macmilan (1994)

    Google Scholar 

  12. Hwang., C., Rhee, F.C.-H.: Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-Means. IEEE Transactions on Fuzzy Systems 15(1), 107–120 (2007)

    Article  Google Scholar 

  13. Jager, R.: Fuzzy Logic in Control, Ph.D. Dissertation, Technische Universiteit Delft (1995)

    Google Scholar 

  14. Janikow, C.Z.: Fuzzy decision trees: issues and methods. IEEE Transactions on Systems, Man, and Cybernetics 28(3), 1–14 (1998)

    Google Scholar 

  15. Janikow, C.Z.: Exemplar learning in fuzzy decision trees. In: Proc. IEEE International Conference on Fuzzy Systems, Piscataway, NJ, pp. 1500–1505 (1996)

    Google Scholar 

  16. Łȩski, J., Henzel, N.: A neuro-nuzzy system based on logical interpretation of if-then rules. International Journal of Applied Mathematics and Computer Science 10(4), 703–722 (2000)

    Google Scholar 

  17. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems - Introduction and new directions. Prentice Hall PTR, Englewood Cliffs (2001)

    MATH  Google Scholar 

  18. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  19. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc., Los Altos (1993)

    Google Scholar 

  20. Quinlan, J.R.: Learning with continuous classes. In: Proc. 5th Australian Joint Conference on Artificial Intelligence, pp. 343–348. World Scientific, Singapore (1992)

    Google Scholar 

  21. Piegat, A.: Fuzzy Modeling and Control. Physica-Verlag (2001)

    Google Scholar 

  22. Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Physica-Verlag, Springer, New York (2002)

    MATH  Google Scholar 

  23. Rutkowska, D., Nowicki, R.: Implication-based neuro-fuzzy architectures. International Journal of Applied Mathematic and Computer Science 10(4), 675–701 (2000)

    MATH  Google Scholar 

  24. Rutkowski, L.: Methods and Techniques of Artificial Intelligence, PWN, Warsaw, Poland (in Polish) (2005)

    Google Scholar 

  25. Yager, R.R.: Ranking fuzzy subsets over the unit interval. In: Proc. CDC pp. 1435–1437 (1978)

    Google Scholar 

  26. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - I. Information Sciences 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  28. Żurada, J.M.: Introduction to Artificial Nueral Systems. West Publishing Company (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leszek Rutkowski Ryszard Tadeusiewicz Lotfi A. Zadeh Jacek M. Zurada

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bartczuk, Ł., Rutkowska, D. (2008). Type-2 Fuzzy Decision Trees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69731-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69572-1

  • Online ISBN: 978-3-540-69731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics