Abstract
Tracking of multiple objects belongs to one of the fundamental tasks of computer vision. In this paper an improvement to the continuously adaptive mean shift tracking method is proposed. It consists in substitution of the probabilistic density function for the especially formed membership function. This makes possible design of tracking systems in terms of fuzzy logic. Additionally, a special data structure was developed to allow tracking of multiple objects at a time. It stores information on image regions which are active for tracking. By this it provides initial conditions for tracking in subsequent frames which also speeds up computations. The method was used and verified in an application of the road signs tracking in real time of 30 frames/s.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bradski, G.: Computer Vision Face Tracking For Use in a Perceptual User Interface. Intel Technical Report (1998)
Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE PAMI 15(6), 602–605 (1993)
Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE PAMI 24(5), 603–619 (2002)
Comaniciu, D., Ramesh, V., Meer, P.: The Variable Bandwidth Mean Shift and Data-Driven Scale Selection. In: IEEE ICCV, vol. 1, pp. 438–445 (2001)
Cyganek, B.: Circular Road Signs Recognition with Soft Classifiers. Integrated Computer-Aided Engineering 14(4), 323–343 (2007)
Cyganek, B.: Committee Machine for Road-Signs Classification. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 583–592. Springer, Heidelberg (2006)
DaimlerChrysler: The Thinking Vehicle (2002), http://www.daimlerchrysler.com
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Chichester (2001)
Fang, C.-Y., Chen, S.-W., Fuh, C.-S.: Road-Sign Detection and Tracking. IEEE Transactions on Vehicular Technology 52(5), 1329–1341 (2003)
Freeman, W.T., Tanaka, K., Ohta, J., Kyuma, K.: Computer Vision for Computer Games. In: IEEE 2nd Int. Conf. on Automatic Face and Gesture Recognition, pp. 100–105 (1996)
Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with application in pattern recognition. IEEE Tr. Information Theory 21, 32–40 (1975)
Hsu, R.-L., Abdel-Mottaleb, M., Jain, A.K.: Face Detection in Color Images. IEEE PAMI 24(5), 696–707 (2002)
Jones, M.J., Rehg, J.M.: Statistical Color Models with Application to Pixel-Level Human Skin Detection. In: IEEE Int. Conf. Pat. Recognition, vol. 1, pp. 1056–1059 (2000)
Kim, K.I., Jung, K., Kim, J.H.: Texture-Based Approach for Text Detection in Images Using Support Vector Machines and Continuously Adaptive Mean Shift Algorithm. IEEE PAMI 25(12), 1631–1639 (2003)
Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)
Maldonado-Bascón, S., Lafuente-Arroyo, S., Gil-Jiménez, P., Gómez-Moreno, H., López-Ferreras, F.: Road-Sign Detection and Recognition Based on Support Vector Machines. IEEE Tr. on Int. Transport. 8(2), 264–278 (2007)
Paclík, P., Novovièová, J., Duin, R.P.W.: Building road sign classifiers using a trainable similarity measure. IEEE Trans. on Int. Transport. 7(3), 309–321 (2006)
Phung, S.L., Bouzerdoum, A., Chai, D.: Skin Segmentation Using Color Pixel Classification: Analysis and Comparison. IEEE PAMI 27(1), 148–154 (2005)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. In: The Art of Scientific Computing. Cambridge University Press, Cambridge (1999)
Road Signs and Signalization. Directive of the Polish Ministry of Infrastructure, Internal Affairs and Administration (Dz. U. Nr 170, poz. 1393) (2002)
Rutkowski, L.: Techniques and Methods of Artificial Intelligence (in Polish), PWN (2005)
Siemens VDO: (2007), http://usa.siemensvdo.com/topics/adas/traffic-sign-recognition/
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cyganek, B. (2008). Real-Time Road Signs Tracking with the Fuzzy Continuously Adaptive Mean Shift Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)