Abstract
Neuro-fuzzy systems show very good performance and the knowledge comprised within their structure is easily interpretable. To further improve their accuracy they can be combined into ensembles. In the paper we combine specially modified Mamdani neuro-fuzzy systems into an AdaBoost ensemble. The proposed modification improves the interpretability of knowledge by allowing merging the subsystems rule bases into one knowledge base. Simulations on two benchmarks shows excellent performance of the modified neuro-fuzzy systems.
This work was partly supported by the Foundation for Polish Science (Professorial Grant 2005-2008) and the Polish Ministry of Science and Higher Education (Habilitation Project 2007-2010 Nr N N516 1155 33, Special Research Project 2006-2009, Polish-Singapore Research Project 2008-2010, Research Project 2008-2010).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press Inc., New York (1995)
Bezdek, J.C., Pal, S.K.: Fuzzy Models for Pattern Recognition. IEEE Press, New York (1992)
Bezdek, J., Keller, J., Krisnapuram, R., Pal, N.R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Press, Norwell (1999)
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
Breiman, L.: Bias, variance, and arcing classifiers, Technical Report 460, Statistics Department, University of California (1997)
Czogała, E., Łȩski, J.: Fuzzy and Neuro Fuzzy Intelligent Systems. Physica Verlag, Heidelberg (2000)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2000)
Konar, A.: Computational Intelligence. Springer, Heidelberg (2005)
Kuncheva, L.I.: Fuzzy Classifier Design. Physica Verlag, Heidelberg (2000)
Kuncheva, L.I.: Combining Pattern Classifiers, Methods and Algorithms. John Wiley & Sons, Chichester (2004)
Łȩski, J.: A Fuzzy If-Then Rule-Based Nonlinear Classifier. Int. J. Appl. Math. Comput. Sci. 13(2), 215–223 (2003)
Meir., R., Ratsch, G.: An Introduction to Boosting and Leveraging. Advanced Lectures on Machine Learning (2003)
Korytkowski, M., Rutkowski, L., Scherer, R.: On Combining Backpropagation with Boosting. In: 2006 International Joint Conference on Neural Networks, IEEE World Congress on Computational Intelligence, Vancouver, BC, Canada (2006)
Łȩski, J.: A Fuzzy If-Then Rule-Based Nonlinear Classifier. Int. J. Appl. Math. Comput. Sci. 13(2), 215–223 (2003)
Rutkowski, R.: Flexible Neuro-Fuzzy Systems. Kluwer Academic Publishers, Dordrecht (2004)
Schapire, R.E.: A brief introduction to boosting. In: Proc. of the Sixteenth International Joint Conference on Artificial Intelligence (1999)
Świniarski, R.W.: Rough Sets Methods in Feature Reduction and Classification. Int. J. Appl. Math. Comput. Sci. 11(3), 565–582 (2001)
Wang, L.-X.: Adaptive Fuzzy Systems And Control. PTR Prentice Hall, Englewood Cliffs (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Korytkowski, M., Rutkowski, L., Scherer, R. (2008). From Ensemble of Fuzzy Classifiers to Single Fuzzy Rule Base Classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)