Abstract
In this paper we present the problem of designing modular systems combined with the Bagging Algorithm. As component classifiers the Mamdani-type neuro fuzzy-systems are applied and trained using evolutionary methods. Experimental investigations presented in this paper include the classification performed by the modular system built by means of classic Bagging algorithm and its modified version which assigns evolutionary chosen weights to base classifiers.
This work was partly supported by the Foundation for Polish Science (Professorial Grant 2005-2008) and Polish Ministry of Science and Higher Education (Special Research Project 2006-2009, Polish-Singapore Research Project 2008-2010, Research Project 2008-2010).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arabas, J.: Lectures on Evolutionary Algorithms (in Polish), WNT, Warsaw (2001)
Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, Oxford (1996)
Breiman, L.: Bagging predictors. Machine Learning 26(2), 123–140 (1996)
Cordon, O., Herrera, F., Hoffman, F., Magdalena, L.: Genetic Fuzzy System. In: Evolutionary Tunning and Learning of Fuzzy Knowledge Bases. World Scientific, Singapore (2000)
Czabanski, R.: Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning. Intenrational Journal of Applied Mathematics and Computer Science 16(3), 357–372 (2006)
Duch, W., Korbicz, J., Rutkowski, L., Tadeusiewicz, R.: Biocybernetics and biomedical engineering (in Polish), vol. 6. Akademicka Oficyna Wydawnicza EXIT, Warszawa (2000)
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)
Gabryel, M., Cpalka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: I Workshop on Genetic Fuzzy Systems, Genewa, pp. 119–123 (2005)
Gabryel, M., Rutkowski, L.: Evolutionary method for learning neuro-fuzzy systems with applications to medical diagnosis (in Polish), XIV Krajowa Konferencja Naukowa Biocybernetyka i Inynieria Biomedyczna, pp. 960-965, Czstochowa (2005)
Gabryel, M., Rutkowski, L.: Evolutionary Learning of Mamdani-Type Neuro-fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 354–359. Springer, Heidelberg (2006)
Korytkowski, M., Gabryel, M., Rutkowski, L., Drozda, S.: Evolutionary Methods to Create Interpretable Modular System. LNCS (LNAI), vol. 5097. Springer, Heidelberg (2008)
Kuncheva, L.I.: Fuzzy Classifier Design. Physica Verlag, Heidelberg, New York (2000)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)
Rutkowska, D., Nowicki, D.R.: Implication-Based Neuro-Fuzzy Architectures. International Journal of Applied Mathematics and Computer Science 10(4) (2000)
Rutkowska, D.: Neuro Fuzzy Architectures and Hybrid Learning. Springer, Heidelberg (2002)
Rutkowski, L.: Computational Inteligence Methods and Techniques (in Polish). PWN, Warszawa (2006)
Rutkowski, L.: Flexible Neuro Fuzzy Systems. Kluwer Academic Publishers, Dordrecht (2004)
Rutkowski, L.: Methods and Techniques of Artificial Inteligence (in Polish). Wydawnictwo Naukowe PWN, Warsaw (2005)
Mertz, C.J., Murphy, P.M.: UCI respository of machine learning databases, http://www.ics.uci.edu/pub/machine-learning-databases
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gabryel, M., Rutkowski, L. (2008). Evolutionary Methods for Designing Neuro-fuzzy Modular Systems Combined by Bagging Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)