Abstract
Convergence properties of genetic algorithms are investigated. For them some measures are introduced. A classification procedure is proposed for genetic algorithms based on a conjecture: the entropy and the fractal dimension of trajectories produced by them are quantities that characterize the classes of the algorithms. The role of these quantities as invariants of the algorithm classes is presented. The present approach can form a new method in construction and adaptation of genetic algorithms and their optimization based on dynamical systems theory.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baker, G.L., Gollub, J.P.: Chaotic Dynamics: an Introduction. Cambridge Univ. Press, Cambridge (1992)
Barnsley, M.F.: Lecture notes on iterated function systems. In: Denamney, R.L., Keen, L. (eds.) Chaos and Fractals. The Mathematics Behind the Computer Graphics, Proc.Symp. Appl. Math., vol. 39, pp. 127–144. American Mathematical Society, Providence, Rhode Island, (1989)
Falconer, K.J.: Fractal geometry. In: Math. Found. Appl., pp. 15–25. John Wiley, Chichester, Chichester (1990)
Friedman, N.A., Ornstein, D.S.: On isomorphisms of weak Bernoulli transformations. Adv. in Math. 5, 365–394 (1970)
Harrison, J.: An introduction to fractals. In: Denamney, R.L., Keen, L. (eds.) Chaos and Fractals. The Mathematics Behind the Computer Graphics, Proc. Symp. Appl. Math., American Mathematical Society, Providence, Rhode Island, vol. 39, pp. 107–126 (1989)
Kieś, P.: Dimension of attractors generated by a genetic algorithm. In: Proc. of Workshop Intelligent Information Systems IX, Bystra, Poland, June 12-16, pp. 40–45 (2000)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)
Ossowski, A.: Statistical and topological dynamics of evolutionary algorithms. In: Proc. of Workshop Intelligent Information Systems IX, Bystra, Poland, June 12-16, pp. 94–103 (2000)
Ott, E.: Chaos in Dynamical Systems. Cambridge Univ. Press, Cambridge (1996)
Ornstein, D.S.: Ergodic theory, Randomness and Dynamical Systems. Yale Univ. Press (1974)
Vose, M.D.: Modelling Simple Genetic Algorithms. Evolutionary Computation 3(4), 453–472 (1996)
Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Transaction on Evolutionary Computation 1(1), 67–82 (1997), http://ic.arc.nasa.gov/people/dhw/papers/78.pdf
Igel, C., Toussaint, M.: A No-Free-Lunch Theorem for Non-Uniform Distributions of Target Functions. Journal of Mathematical Modelling and Algorithms 3, 313–322 (2004)
English, T.: No More Lunch: Analysis of Sequential Search. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pp. 227–234 (2004), http://BoundedTheoretics.com/CEC04.pdf
Szlenk, W.: An Introduction to the Theory of Smooth Dynamical Systems, PWN, Warszawa. John Wiley &Sons, Chichester (1984)
Choe, G.H.: Computational Ergodic Theory. Springer, Heidelberg, New York (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kotowski, S., Kosiński, W., Michalewicz, Z., Nowicki, J., Przepiórkiewicz, B. (2008). Fractal Dimension of Trajectory as Invariant of Genetic Algorithms. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_41
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)