Abstract
In the paper an application of evolutionary algorithm with multi-layer chromosomes to the design and multi-objective optimization of combinational digital circuits is presented. The optimization criterions are minimizations of: number of gates, number of transistors in the circuit, and circuit propagation time. Four combinational circuits, chosen from literature, are designed, and optimized using proposed method. Results obtained using this method are compared with results obtained by other methods. The results obtained using this method are in many cases better than those obtained using other methods.
This work was supported by the Polish State Committee for Scientific Research (KBN) under Grant No. 3 T11B 025 29.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Greene, J.: Simulated Evolution and Adaptive Search in Engineering Design, Experiences at the University of Cape Town, In: 2nd Online Workshop on Soft Computing (July 1997)
Coello, C.A., Christiansen, A.D., Aguirre, A.H.: Use of Evolutionary Techniques to Automate the Design of Combinational Circuits. International Journal of Smart Engineering System Design (2000)
Slowik, A., Bialko, M.: Design and Optimization of Combinational Digital Circuits Using Modified Evolutionary Algorithm. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 468–473. Springer, Heidelberg (2004)
Slowik, A., Bialko, M.: Evolutionary Design and Optimization of Combinational Digital Circuits with Respect to Transistor Count. In: 4th National Conference of Electronics Technical University of Koszalin, June 2005, pp. 207–212 (2005)
Nilagupta, P., Ou-thong, N.: Logic Function Minimization Based On Transistor Count Using Genetic Algorithm. In: Proc. of the 3rd ICEP, Songkla, Thailand (January 2003)
Ercegovac, M.D., Lang, T., Moreno, J.H.: Introduction to Digital Systems. John Wiley, Chichester (1999)
Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Proc. of the 5th International Conference on Genetic Algorithms, pp. 416–423. Morgan Kauffman Publishers, San Francisco (1993)
Slowik, A., Bialko, M.: Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 474–479. Springer, Heidelberg (2004)
Miller, J., Kalganova, T., Lipnitskaya, N., Job, D.: The Genetic Algorithm as a Discovery Engine: Strange Circuits and New Principles. In: Proc. of the AISB Symposium on Creative Evolutionary Systems (CES 1999), Edinburgh, UK (1999)
Kalganova, T., Miller, J.: Evolving more efficient digital circuits by allowing circuit layout and multi-objective fitness. In: Proc. of the First NASA/DoD Workshop on Evolvable Hardware, Los Alamitos, California, pp. 54–63 (1999)
Coello, C.A., Christiansen, A.D., Aguirre, A.H.: Automated Design of Combinational Logic Circuits using Genetic Algorithms. In: Proc. of the International Conference on Artificial Neural Nets and Genetic Algorithms, pp. 335–338 (April 1997)
Coello, C.A., Aguirre, A.H., Buckles, B.P.: Evolutionary Multiobjective Design of Combinational Logic Circuits. In: Proc. of the Second NASA/DoD Workshop on Evolvable Hardware, Los Alamitos, California, July 2000, pp. 161–170 (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Słowik, A., Białko, M. (2008). Design and Multi-Objective Optimization of Combinational Digital Circuits Using Evolutionary Algorithm with Multi-Layer Chromosomes. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_47
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)