Abstract
In this paper, we propose a new Association Rule Mining algorithm for Classification (ARMC). Our algorithm extracts the set of rules, specific to each class, using a fuzzy approach to select the items and does not require the user to provide thresholds. ARMC is experimentaly evaluated and compared to state of the art classification algorithms, namely CBA, PART and RIPPER. Results of experiments on standard UCI benchmarks show that our algorithm outperforms the above mentionned approaches in terms of mean accuracy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. of the 1993 ACM SIGMOD International Conference on Management of Data SIGMOD 1993, Washington, DC, pp. 207–216 (1993)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pp. 487–499. Morgan Kaufmann, San Francisco (1994)
Cohen, W.: Fast effective rule induction. In: Proceedings of the 12th International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann, San Francisco (1995)
Frank, E., Witten, I.: Generating accurate rule sets without global optimisation. In: Morgan Kaufmann Madison (ed.)Proceedings of the Fifteenth International Conference on Machine Learning, pp. 144–151 (1998)
Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.: Freespan: frequent pattern-projected sequential pattern mining. In: KDD, pp. 355–359 (2000)
Hussain, F., Liu, H., Suzuki, E., Lu, H.: Exception rule mining with a relative interestingness measure. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 86–97 (2000)
Li, W., Han, J., Pei, J.: Cmar: Accurate and efficient classification based on multiple class-association rules. In: ICDM, pp. 369–376 (2001)
Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: KDD, pp. 80–86 (1998)
Liu, H., Lu, H., Feng, L., Hussain, F.: Efficient search of reliable exceptions. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 194–203. Springer, Heidelberg (1999)
Merz, C.J., Murphy, P.M.: UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine (1996)
Thabtah, F.A., Cowling, P.I., Peng, Y.: Mmac: A new multi-class, multi-label associative classification approach. In: ICDM, pp. 217–224 (2004)
Thabtah, F.A., Cowling, P.I., Peng, Y.: Multiple labels associative classification. Knowl. Inf. Syst. 9(1), 109–129 (2006)
Yin, X., Han, J.: CPAR: Classification based on predictive association rules. In: Proceedings of 2003 SIAM International Conference on Data Mining, San Fransisco, CA (2003)
Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning - ii. Information Sciences (Part 2) 8(4), 301–357 (1975)
Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of association rules. Technical report, Rochester, NY, USA (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zemirline, A., Lecornu, L., Solaiman, B., Ech-cherif, A. (2008). An Efficient Association Rule Mining Algorithm for Classification. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_69
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)