Abstract
Novel method for spleen’s semiautomatic accurate quantitative morphometry adaptable in diagnosis of splenomegally is described. The method is based on multiscale wavelet image decomposition, Bayesian inference that reveals the most probable structure delineation in the image and spectral method to smooth and approximate the most probable representation of a real contour hidden in a noisy or fuzzy data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cheong, H.: Double Fourier series on a sphere: Applications to elliptic and vorticity equations. Jour. of Comp. Physics 157(1), 327–349 (2000)
Dydenko, I., Friboulet, D., Gorce, J.M., D’hooge, J., Bijnens, B., Magnin, I.E.: Towards ultrasound cardiac image segmentation based on the radiofrequency signal. Medical Image Analysis 7, 353–367 (2003)
Hammoude, A.: Endocardial border identification in two-dimensional echocardiografic images: review of methods. Comp. Med. Imag. Graph. 32, 181–193 (1998)
Heimdal, A., Stoylen, A., Torp, H., Skjaerpe, T.: Real-time strain rate imaging of the left ventricle by ultrasound. J. Am. Soc. Echocard. 11, 1013–1019 (1998)
Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real time algorithm for signal analysis with the help of the wavelet transform, Wavelets: Time-Frequency Methods and Phase-Space, pp. 286–297. Springer, Heidelberg (1989)
Laidlaw, D.H., Fleischer, K.W., Barr, A.H.: Partial volume segmentation with voxel histograms. In: Bankman, I.N. (ed.) Handbook of Medical Imaging, Processing and Analysis, pp. 195–214. Academic Press, London (2000)
Li, J., Hero, A.O.: A Fast Spectral Method for Active 3D Shape Reconstruction. Jour. of Math. Imaging and Vision 20, 73–87 (2004)
Mitchell, S.C., Bosch, J.G., Lelieveldt, B.P.F., van der Geest, R.J., Reiber, J.H.C., Sonka, M.: 3-D Active Appearrance Models: Segmentation of Cardiac MR and Ultrasound Images. IEEE Trans. on Medical Imaging 21(9), 1167–1178 (2002)
Soltysinski, T.: Novel algorithm for active surface reconstruction by Bayesian constrained spectral method. In: Hozman, J., Kneppo, P. (eds.) IFMBE Proceedings, Prague: IFMBE, Proceedings of the 3rd European Medical & Biological Engineering Conference - EMBEC05. Prague, Czech Republic, 20-25.11.2005, vol. 11, pp. 4191–4195 (2005) ISSN 1727-1983
Soltysinski, T.: Bayesian constrained spectral method for segmentation of noisy medical images. Theory and applications. In: Sordo, M., Sachin, V., Jain, L.C. (eds.) Advanced Computational Intelligence Paradigms in Healthcare - 3, Studies in Computational Intelligence, vol. 107, Springer, Heidelberg (2008)
Sahoo, P.K., Soltani, S., Wong, A.K.C.: A survey of thresholding techniques. Computer Vision, Graphics, and Image Processing 41, 233–260 (1988)
Beucher, S., Lantuejoul, C.: Use of watersheds in contour detection. In: International Workshop on image processing, real-time edge and motion detection/estimation, Rennes, France (September 1979)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes - Active Contour Models. International Journal of Computer Vision 1(4), 321–331 (1987)
Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi Formulations. Journal of Computational Physics 79, 12–49 (1988)
McInerney, T., Terzopulos, D.: Deformable models in medical image analysis: A survey. Med. Img. Analysis (2) (1996)
Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)
Xu, C., Prince, J.L.: Snakes, Shapes, and Gradient Vector Flow. IEEE Transactions on Image Processing 7(3), 359–369 (1998)
Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. John Wiley & Sons, New York (1994)
Berry D.A.: Statistics: A Bayesian Perspective, Duxbury, Belmont (1996)
Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1985)
Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis. John Wiley & Sons, New York (1973)
de Stefano, A., White, P.R.: Selection of thresholding scheme for image noise reduction on wavelet components using bayesian estimation. Jour. of Math.Imaging and Vision 21, 225–233 (2004)
Sharon, E., Brandt, A., Basri, R.: Segmentation and boundary detection using multiscale intensity measurements. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, p. 469 (2001)
Soltysinski, T., Kałużyński, K., Pałko, T.: Cardiac ventricle contour reconstruction in ultrasonographic images using Bayesian constrained spectral method. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 988–997. Springer, Heidelberg (2006)
Soltysinski, T.: Speckle Noise Removal By ‘A Trous Decomposition And Threshold-limited Synthesis In Ultrasonic Cardiac Images. In: Proceedings of the conference Biosignal 2006, Brno Technical University, Czech Republic, vol. 18 (2006)
Gravel, P., Beaudoin, G., De Guise, J.A.: A method for modeling noise in medical images. IEEE Transactions on medical imaging 23(10), 1221–1232 (2004)
Starck, J.-L., Murtagh, F.: Astronomical image and data analysis. Springer, Berlin (2002)
Soltysinski, T.: Influence of multiscale denoising on Bayesian constrained spectral method in segmentation of noisy medical images. IFMBE Proceedings 14 (2006)
Sołtysiński, T.: Novel Bayesian constrained spectral method for cell morphometry in multimodal molecular imaging. Molecular Imaging 6(5), 366 (2007)
Bankman, I.N. (ed.): Handbook of Medical Imaging, Processing and Analysis. Academic Press, London (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sołtysiński, T. (2008). Novel Quantitative Method for Spleen’s Morphometry in Splenomegally. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_93
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_93
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)