Skip to main content

Dimensions of Points in Self-similar Fractals

  • Conference paper
Computing and Combinatorics (COCOON 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5092))

Included in the following conference series:

Abstract

We use nontrivial connections between the theory of computing and the fine-scale geometry of Euclidean space to give a complete analysis of the dimensions of individual points in fractals that are computably self-similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective Strong Dimension in Algorithmic Information and Computational Complexity. SIAM Journal on Computing 37, 671–705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnsley, M.F.: Fractals Everywhere. Morgan Kaufmann Pub., San Francisco (1993)

    MATH  Google Scholar 

  3. Billingsley, P.: Hausdorff Dimension in Probability Theory. Illinois J. Math 4, 187–209 (1960)

    MathSciNet  Google Scholar 

  4. Brattka, V., Weihrauch, K.: Computability on Subsets of Euclidean Space i: Closed and Compact Subsets. Theoretical Computer Science 219, 65–93 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Braverman, M.: On the Complexity of Real Functions. In: Proceedings of the Forty-Sixth Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp. 155–164 (2005)

    Google Scholar 

  6. Braverman, M., Cook, S.: Computing over the Reals: Foundations for Scientific Computing. Notices of the AMS 53(3), 1024–1034 (2006)

    MathSciNet  Google Scholar 

  7. Braverman, M., Yampolsky, M.: Constructing Non-computable Julia Sets. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing (STOC 2007), pp. 709–716 (2007)

    Google Scholar 

  8. Cai, J., Hartmanis, J.: On Hausdorff and Topological Dimensions of the Kolmogorov Complexity of the Real Line. Journal of Computer and Systems Sciences 49, 605–619 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cajar, H.: Billingsley Dimension in Probability Spaces. Lecture Notes in Mathematics. Springer, Heidelberg (1982)

    Google Scholar 

  10. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Inc., New York (1991)

    MATH  Google Scholar 

  11. Edgar, G.A.: Integral, Probability, and Fractal Measures. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  12. Falconer, K.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  13. Falconer, K.: Dimensions and Measures of Quasi Self-similar Sets. Proc. Amer. Math. Soc. 106, 543–554 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley & sons, Chichester (2003)

    MATH  Google Scholar 

  15. Fernau, H., Staiger, L.: Iterated Function Systems and Control Languages. Information and Computation 168, 125–143 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fortnow, L., Lee, T., Vereshchagin, N.: Kolmogorov Complexity with Error. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 137–148. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Grzegorczyk, A.: Computable Functionals. Fundamenta Mathematicae 42, 168–202 (1955)

    MATH  MathSciNet  Google Scholar 

  18. Gu, X., Lutz, J.H., Mayordomo, E.: Points on Computable Curves. In: Proceedings of the Forty-Seventh Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 469–474 (2006)

    Google Scholar 

  19. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded Geometries, Fractals, and Low-Distortion Embeddings. In: Proceedings of the Forty-Fourth Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003), pp. 534–543 (2003)

    Google Scholar 

  20. Hertling, P.: Is the Mandelbrot Set Computable? Mathematical Logic Quarterly 51, 5–18 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hitchcock, J.M.: Correspondence Principles for Effective Dimensions. Theory of Computing Systems 38, 559–571 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kamo, H., Kawamura, K.: Computability of Self-Similar Sets. Math. Log. Q. 45, 23–30 (1999)

    MATH  MathSciNet  Google Scholar 

  23. Ko, K.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)

    MATH  Google Scholar 

  24. Lacombe, D.: Extension de la Notion de Fonction Recursive aux Fonctions d’une ow Plusiers Variables Reelles and other Notes. Comptes Rendus 240, 2478–2480; 241, 13–14; 151–153, 1250–1252 (1955)

    MATH  MathSciNet  Google Scholar 

  25. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications. 2nd edn. Springer, Berlin (1997)

    MATH  Google Scholar 

  26. Lutz, J.H.: The Dimensions of Individual Strings and Sequences. Information and Computation 187, 49–79 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lutz, J.H., Weihrauch, K.: Connectivity Properties of Dimension Level Sets. In: Proceedings of the Fourth International Conference on Computability and Complexity in Analysis (2007)

    Google Scholar 

  28. Martin, D.A.: Classes of Recursively Enumerable Sets and Degrees of Unsolvability. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 12, 295–310 (1966)

    Google Scholar 

  29. Moran, P.A.: Additive Functions of Intervals and Hausdorff Dimension. Proceedings of the Cambridge Philosophical Society 42, 5–23 (1946)

    Article  Google Scholar 

  30. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  31. Rettinger, R., Weihrauch, K.: The Computational Complexity of some Julia Sets. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing (SOTC 2003), pp. 177–185 (2003)

    Google Scholar 

  32. Staiger, L.: A Tight Upper Bound on Kolmogorov Complexity and Uniformly Optimal prediction. Theory of Computing Systems 31, 215–229 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Vereshchagin, K., Vitanyi, P.M.B.: Algorithmic Rate-Distortion Function. In: Proceedings IEEE Intn’l Symp. Information Theory (2006)

    Google Scholar 

  34. Weihrauch, K.: Computable Analysis. An Introduction. Springer, Heidelberg (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xiaodong Hu Jie Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lutz, J.H., Mayordomo, E. (2008). Dimensions of Points in Self-similar Fractals. In: Hu, X., Wang, J. (eds) Computing and Combinatorics. COCOON 2008. Lecture Notes in Computer Science, vol 5092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69733-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69733-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69732-9

  • Online ISBN: 978-3-540-69733-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics