Skip to main content

Haplotype Inferring Via Galled-Tree Networks Is NP-Complete

  • Conference paper
Computing and Combinatorics (COCOON 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5092))

Included in the following conference series:

Abstract

The problem of determining haplotypes from genotypes has gained considerable prominence in the research community since the beginning of the HapMap project. Here the focus is on determining the sets of SNP values of individual chromosomes (haplotypes), since such information better captures the genetic causes of diseases. One of the main algorithmic tools for haplotyping is based on the assumption that the evolutionary history for the original haplotypes satisfies perfect phylogeny. The algorithm can be applied only on individual blocks of chromosomes, in which it is assumed that recombinations either do not happen or happen with small frequencies. However, exact determination of blocks is usually not possible. It would be desirable to develop a method for haplotyping which can account for recombinations, and thus can be applied on multiblock sections of chromosomes. A natural candidate for such a method is haplotyping via phylogenetic networks or their simplified version: galled-tree networks, which were introduced by Wang, Zhang, Zhang ([25]) to model recombinations. However, even haplotyping via galled-tree networks appears hard, as the algorithms exist only for very special cases: the galled-tree network has either a single gall ([23]) or only small galls with two mutations each ([8]). Building on our previous results ([6]) we show that, in general, haplotyping via galled-tree networks is NP-complete, and thus indeed hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bordewich, M., Semple, C.: On the Computational Complexity of the Rooted Subtree Prune and Regraft Distance. Annals of Combinatorics 8, 409–423 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Clark, A.: Inference of Haplotypes from PCR-Amplified Samples of Dipoid Populations. Molecular Biology and Evolution 7, 111–122 (1990)

    Google Scholar 

  3. Consortium, I.H.: A Haplotype Map of the Human Genome. Nature 437, 1299–1320 (2005)

    Article  Google Scholar 

  4. Daly, M., Rioux, J., Schaffner, S., Hudson, T., Lander, E.: High-Resolution Haplotype Structure in the Human Genome. Nature Genetics 29(2), 229–232 (2001)

    Article  Google Scholar 

  5. Gabriel, S., Schaffner, S., Nguyen, H., Moore, J., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E., Daly, M., Altshuler, D.: The Structure of Haplotype Blocks in the Human Genome. Science 296 (2002)

    Google Scholar 

  6. Gupta, A., Manuch, J., Stacho, L., Zhao, X.: Haplotype Inferring via Galled-Tree Networks Using a Hypergraph Covering Problem for Special Genotype Matrices. Discr. Appl. Math. (to appear)

    Google Scholar 

  7. Gupta, A., Manuch, J., Stacho, L., Zhao, X.: Characterization of the Existence of Galled-Tree Networks. J. of Bioinform. and Comp. Biol. 4(6), 1309–1328 (2006)

    Article  Google Scholar 

  8. Gupta, A., Manuch, J., Stacho, L., Zhao, X.: Algorithm for Haplotype Inferring via Galled-Tree Networks with Simple Galls (extended abstract). In: Istrail, S., Pevzner, P., Waterman, M. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 121–132. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Gusfield, D.: Inference of Haplotypes from Samples of Diploid Populations: Complexity and Algorithms. J. Comp. Biology 8(3), 305–323 (2001)

    Article  Google Scholar 

  10. Gusfield, D.: Haplotyping as Perfect Phylogeny: Conceptual Framework and Efficient Solutions. In: Proceedings of the Sixth Annual International Conference on Computational Biology (RECOMB 2002), pp. 166–175 (2002)

    Google Scholar 

  11. Gusfield, D.: Haplotype Inference by Pure Parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Gusfield, D.: Optimal, Efficient Reconstruction of Root-Unknown Phylogenetic Networks with Constrained and Structured Recombination. J. Comput. Syst. Sci. 70(3), 381–398 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gusfield, D., Eddhu, S., Langley, C.: The Fine Structure of Galls in Phylogenetic Networks. INFORMS Journal on Computing 16(4), 459–469 (2004)

    Article  MathSciNet  Google Scholar 

  14. Gusfield, D., Eddhu, S., Langley, C.: Optimal, Efficient Reconstruction of Phylogenetic Networks with Constrained Recombination. Journal of Bioinformatics and Computational Biology 2(1), 173–213 (2004)

    Article  Google Scholar 

  15. Gusfield, D., Orzack, S.H.: Handbook of Computational Molecular Biology, Chapter Haplotype Inference. CRC Computer and Information Science Series, p. 18C1C18C28. Chapman & Hall, Boca Raton (2005)

    Google Scholar 

  16. Helmuth, L.: Genome Research: Map of the Human Genome 3.0. Science 293(5530), 583–585 (2001)

    Article  Google Scholar 

  17. Lancia, G., Pinotti, C., Rizzi, R.: Haplotyping Populations: Complexity and Aproximations. Dit-02-082, University of Trento (2002)

    Google Scholar 

  18. Mitra, R.D., Butty, V.L., Shendure, J., Williams, B.R., Housman, D.E., Church, G.M.: Digital Genotyping and Haplotyping with Polymerase Colonies. Proceedings of the Nationlal Academy of Sciences of the United States of America 100, 5926–5931 (2003)

    Article  Google Scholar 

  19. Papadimitriou, C.H.: Computational Complexity. Addison-Wiesley Publishing Company, Inc. (1994)

    Google Scholar 

  20. Patil, N., Berno, A., Hinds, D., Barrett, W., Doshi, J., Hacker, C., Kautzer, C., Lee, D., Marjoribanks, C., McDonough, D., Nguyen, B., Norris, M., Sheehan, J., Shen, N., Stern, D., Stokowski, R., Thomas, D., Trulson, M., Vyas, K., Frazer, K., Fodor, S., Cox, D.: Blocks of Limited Haplotype Diversity Revealed by High-Resolution Scanning of Human Chromosome 21. Science 294(5547), 1719–1723 (2001)

    Article  Google Scholar 

  21. Pennisi, E.: BREAKTHROUGH OF THE YEAR: Human Genetic Variation. Science 318(5858), 1842–1843 (2007)

    Article  Google Scholar 

  22. Song, Y.S.: A Concise Necessary and Sufficient Condition for the Existence of a Galled-Tree. IEEE/ACM Transaction on Computational Biology and Bioinformatics 3(2), 186–191 (2006)

    Article  Google Scholar 

  23. Song, Y.S., Wu, Y., Gusfield, D.: Algorithms for Imperfect Phylogeny Haplotyping (IPPH) with a Single Homoplasy or Recombination Event. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 152–164. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Thorisson, G., Smith, A., Krishnan, L., Stein, L.: The International HapMap Project Web Site. Genome Research 15, 1591–1593 (2005)

    Article  Google Scholar 

  25. Wang, L., Zhang, K., Zhang, L.: Perfect Phylogenetic Networks with Recombination. Journal of Computational Biology 8(1), 69–78 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xiaodong Hu Jie Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gupta, A., Maňuch, J., Stacho, L., Zhao, X. (2008). Haplotype Inferring Via Galled-Tree Networks Is NP-Complete. In: Hu, X., Wang, J. (eds) Computing and Combinatorics. COCOON 2008. Lecture Notes in Computer Science, vol 5092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69733-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69733-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69732-9

  • Online ISBN: 978-3-540-69733-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics