Skip to main content

On the Monotonicity of Weak Searching

  • Conference paper
Computing and Combinatorics (COCOON 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5092))

Included in the following conference series:

Abstract

In this paper, we propose and study two digraph searching models: weak searching and mixed weak searching. In these two searching models, each searcher must follow the edge directions when they move along edges, but the intruder can move from tail to head or from head to tail along edges. We prove the monotonicity of the mixed weak searching model by using Bienstock and Seymour’s method, and prove the monotonicity of the weak searching model by using LaPaugh’s method. We show that both searching problems are NP-complete.

Research was supported in part by NSERC and MITACS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alspach, B., Dyer, D., Hanson, D., Yang, B.: Arc Searching Digraphs without Jumping. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616, pp. 354–365. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Barat, J.: Directed Path-Width and Monotonicity in Digraph searching. Graphs and Combinatorics 22, 161–172 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bienstock, D., Seymour, P.: Monotonicity in Graph Searching. Journal of Algorithms 12, 239–245 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fomin, F., Thilikos, D.: On the Monotonicity of Games Generated by Symmetric Submodular Functions. Discrete Applied Mathematics 131, 323–335 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hamidoune, Y.O.: On a pursuit game on Cayley graphs. European Journal of Combinatorics 8, 289–295 (1987)

    MATH  MathSciNet  Google Scholar 

  6. Kirousis, L., Papadimitriou, C.: Searching and Pebbling. Theoretical Computer Science 47, 205–218 (1996)

    Article  MathSciNet  Google Scholar 

  7. LaPaugh, A.: Recontamination does not Help to Search a Graph. Journal of ACM 40, 224–245 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Megiddo, N., Hakimi, S., Garey, M., Johnson, D., Papadimitriou, C.: The Complexity of Searching a Graph. Journal of ACM 35, 18–44 (1998)

    Article  MathSciNet  Google Scholar 

  9. Nowakowski, R.J.: Search and Sweep Numbers of Finite Directed Acyclic Graphs. Discrete Applied Mathematics 41, 1–11 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yang, B., Cao, Y.: Directed Searching Digraphs: Monotonicity and Complexity. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 136–147. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Yang, B., Cao, Y.: Monotonicity of Strong Searching on Digraphs. Journal of Combinatorial Optimization 14, 411–425 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Yang, B., Cao, Y.: Digraph Searching, Directed Vertex Separation and Directed Pathwidth. Discrete Applied Mathematics (Accepted, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xiaodong Hu Jie Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, B., Cao, Y. (2008). On the Monotonicity of Weak Searching. In: Hu, X., Wang, J. (eds) Computing and Combinatorics. COCOON 2008. Lecture Notes in Computer Science, vol 5092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69733-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69733-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69732-9

  • Online ISBN: 978-3-540-69733-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics