Skip to main content

Sparse Key Points Controlled Animation for Individual Face Model

  • Conference paper
Technologies for E-Learning and Digital Entertainment (Edutainment 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5093))

  • 4942 Accesses

Abstract

We use RBF deformation and normal projection to regulate the scanned facial model, which makes their topology equivalent to a regular grid mesh and can generate principle components. Then the synthesized individual face model can be directly flatten to a regular plan, so the motion vectors of vertexes can be interpolated with barycentric coordinate. The regulation and animation remapping needs less than 40 key points and can work in real-time

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and interactive Techniques, International Conference on Computer Graphics and Interactive Techniques, pp. 187–194. ACM Press/Addison-Wesley Publishing Co., New York (1999)

    Chapter  Google Scholar 

  2. Noh, J., Neumann, U.: Expression cloning. In: Proceedings of the 28th Annual Conference on Computer Graphics and interactive Techniques. SIGGRAPH 2001, pp. 277–288. ACM, New York (2001)

    Google Scholar 

  3. Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., Salesin, D.H.: Synthesizing realistic facial expressions from photographs. In: Proceedings of the 25th Annual Conference on Computer Graphics and interactive Techniques, SIGGRAPH 1998, pp. 75–84. ACM, New York (1998)

    Chapter  Google Scholar 

  4. Johnson, D.B., Johnson, A.: A Note on Dijkstra’s Shortest Path Algorithm. J. ACM 20(3), 385–388 (1973)

    Article  MATH  Google Scholar 

  5. Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. (10), 304–320 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  6. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications. Found. Trends. Comput. Graph. Vis. 2(2), 105–171 (2006)

    Article  Google Scholar 

  7. MathWorld, Wolfram Research, http://mathworld.wolfram.com

  8. Sumner, R.W., Popovíc, J.: Deformation transfer for triangle meshes. In: SIGGRAPH 2004, pp. 399–405. ACM, New York (2004)

    Chapter  Google Scholar 

  9. Langer, T., Belyaev, A., Seidel, H.-P.: Spherical Barycentric Coordinates. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zhigeng Pan Xiaopeng Zhang Abdennour El Rhalibi Woontack Woo Yi Li

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yao, J., Wang, Y., Ding, B. (2008). Sparse Key Points Controlled Animation for Individual Face Model. In: Pan, Z., Zhang, X., El Rhalibi, A., Woo, W., Li, Y. (eds) Technologies for E-Learning and Digital Entertainment. Edutainment 2008. Lecture Notes in Computer Science, vol 5093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69736-7_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69736-7_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69734-3

  • Online ISBN: 978-3-540-69736-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics