Abstract
An interpolant for a mutually inconsistent pair of formulas (A,B) is a formula that is (1) implied by A, (2) inconsistent with B, and (3) expressed over the common variables of A and B. An interpolant can be efficiently derived from a refutation of A ∧ B, for certain theories and proof systems. In this tutorial we will cover methods of generating interpolants, and applications of interpolants, including invariant generation and abstraction refinement.
Similar content being viewed by others
References
Craig, W.: Three uses of the herbrand-gentzen theorem in relating model theory and proof theory. J. Symbolic Logic 22(3), 269–285 (1957)
Henzinger, T.A., Jhala, R.: Rupak Majumdar, and K. L. McMillan. Abstractions from proofs. In: Principles of Prog. Lang., POPL 2004, pp. 23–244 (2004)
Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 6–10. Springer, Heidelberg (2005)
McMillan, K.L.: Interpolation and sat-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)
McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–121 (2005)
McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–20. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
McMillan, K.L. (2007). Interpolants and Symbolic Model Checking. In: Cook, B., Podelski, A. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2007. Lecture Notes in Computer Science, vol 4349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69738-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-69738-1_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69735-0
Online ISBN: 978-3-540-69738-1
eBook Packages: Computer ScienceComputer Science (R0)