Skip to main content

Image Segmentation Via Iterative Histogram Thresholding and Morphological Features Analysis

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

Abstract

In this paper, we present a new segmentation algorithm, based on iterated thresholding and on morphological features. A first thresholding, based on the histogram of the image, is done to partition the image into three sets including respectively pixels belonging to foreground, pixels belonging to background, and unassigned pixels. Thresholding of components of unassigned pixels is then iteratively done, based on the histogram of the components. Components of unassigned pixels, possibly still present at the end of iterated thresholding, are assigned to foreground or background by taking into account area, minimum grey-level and spatial relationship with the adjacent sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)

    Article  Google Scholar 

  2. Kamel, M., Zhao, A.: Extraction of binary character/graphics images from grayscale document images. Graphical Models Image Processing 553, 203–217 (1993)

    Article  Google Scholar 

  3. Nakagawa, Y., Rosenfeld, A.: Some experiments on variable thresholding. Pattern Recognition 113, 191–204 (1979)

    Article  Google Scholar 

  4. Deravi, F., Pal, S.K.: Grey level thresholding using second-order statistics. Pattern Recognition Letters 1, 417–422 (1983)

    Article  Google Scholar 

  5. Fu, K.S., Mui, J.K.: A survey on image segmentation. Pattern Recognition 13(1), 3–16 (1981)

    Article  MathSciNet  Google Scholar 

  6. Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Computer Vision, Graphics, and Image Processing 29(1), 100–132 (1985)

    Article  Google Scholar 

  7. Sahoo, P.K., Soltani, S., Wong, A.K.C., Chen, Y.C.: A survey of thresholding techniques. Comput. Vis. Graph. Im. Proc. 41, 233–260 (1988)

    Article  Google Scholar 

  8. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  9. Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annual Review of Biomedical Engineering 2, 315–337 (2000)

    Article  Google Scholar 

  10. Lucchese, L., Mitra, S.K.: Color Image Segmentation: A State-of-the-Art Survey, Image Processing, Vision, and Pattern Recognition. In: Proc. of the Indian National Science Academy (INSA-A), New Delhi, India, vol. 67A(2), pp. 207–221 (2001)

    Google Scholar 

  11. Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34, 2259–2281 (2001)

    Article  MATH  Google Scholar 

  12. Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X.: Yet Another Survey on Image Segmentation: Region and Boundary Information Integration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 408–422. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brancati, N., Frucci, M., Sanniti di Baja, G. (2008). Image Segmentation Via Iterative Histogram Thresholding and Morphological Features Analysis. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics