Abstract
In this paper, we propose a novel video retrieval method using non-parametric based motion classification in the shot-based video indexing structure. The proposed system gets the representative frame and motion information from each shot segmented by the shot change detection method, and extracts visual features and non-parametric based motion information from them. Then, we construct a real-time video retrieval system using similarity comparison between these spatio-temporal features. The extraction of non-parametric based motion features, after the normalized motion vectors are created from an MPEG-compressed stream, is effectively fulfilled by discretizing each normalized motion vector into various angle bins, and by considering the mean, variance, and direction of motion vectors in these bins. In addition, we use the edge-based spatial descriptor to extract the visual feature in representative frames. Experimental evidence shows that our algorithm outperforms other video retrieval methods for image indexing and retrieval. To index the feature vectors, we use R*-tree structures.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rautiainen, M., Hosio, M., Hanski, I., Varanka, M., Kortelainen, J., Ojala, T., Seppänen, T.: TRECVID 2004 experiments at MediaTeam Oulu. In: Proc. TRECVID Workshop at Text Retrieval Conference TREC (in press, 2004)
Fablet, R., Bouthemy, P., Perez, P.: Nonparametric motion characterization using causal probabilistic models for video indexing and retrieval. IEEE Trans. Image Process 11(4), 393–407 (2002)
Babu, R.R., Ramakrishnan, K.R.: Compressed domain video retrieval using object and global motion descriptors. Multimedia tools and Appl. 32(1), 93–113 (2007)
Kim, N.W., Kang, E.K., et al.: Scene change detection and classification algorithm on compressed video streams. In: Proc. of the ITC-CSCC 2001, vol. 1, pp. 279–282 (2001)
Wang, R., Huang, R.T.: Fast camera motion analysis in MPEG domain. In: ICIP, vol. 3, pp. 691–694 (1999)
Kim, N.W., Kim, T.Y., Choi, J.S.: Probability-based motion analysis using bi-directional prediction-independent framework in compressed domain. Optical engineering 44(6), 067008.1–067008.13 (2005)
Deng, Y., Kenney, C., Moore, M.S., Manjunath, B.S.: Peer group filtering and perceptual color image quantization. In: Proc. of IEEE Intl. Symposium on Circuits and Systems, vol. 4, pp. 21–24 (1999)
Kim, N.W., Kim, T.Y., Choi, J.S.: Edge-Based Spatial Descriptor Using Color Vector Angle for Effective Image Retrieval. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 365–375. Springer, Heidelberg (2005)
Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: CVPR, pp. 762–768 (1997)
Pass, G., Zabih, R.: Histogram refinement for content-based image retrieval. In: IEEE WACV, pp. 96–102 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, N.W., Song, H.Y. (2008). Video Retrieval Method Using Non-parametric Based Motion Classification. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-540-69812-8_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69811-1
Online ISBN: 978-3-540-69812-8
eBook Packages: Computer ScienceComputer Science (R0)