Skip to main content

Minimizing the Imbalance Problem in Chromatographic Profile Classification with One-Class Classifiers

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

Abstract

This paper presents a new classification approach to deal with class imbalance in TLC patterns, which is due to the huge difference between the number of normal and pathological cases as a consequence of the rarity of LSD diseases. The proposed architecture is formed by two decision stages: the first is implemented by a one-class classifier aiming at recognizing most of the normal samples; the second stage is a hierarchical classifier which deals with the remaining outliers that are expected to contain the pathological cases and a small percentage of normal samples. We have also evaluated this architecture by a forest of classifiers, using the majority voting as a rule to generate the final classification. The results that were obtained proved that this approach is able to overcome some of the difficulties associated with class imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Keir, G., Winchester, B.G., Clayton, P.: Carbohydrate-deficient Glycoprotein Syndromes: Inborn Errors of Protein Glycosylation. Ann. Clin. Biochem. 36(Pt 1), 20–36 (1999)

    Google Scholar 

  2. Durand, G., Seta, N.: Protein Glycosylation and Diseases: Blood and Urinary Oligosaccharides as Markers for Diagnosis and Therapeutic Monitoring. Clin. Chem. 46, 795–805 (2000)

    Google Scholar 

  3. Scriver, S.R., Beaudet, A.L., Sly, W.S., Valle, D.: The Metabolic Bases of Inherited Disease, vol. 3. MCGraw-Hill, New-York (2001)

    Google Scholar 

  4. Friedman, R.B., Williams, M.A., Moser, H.W., Kolodny, E.H.: Improved Thin-Layer Chromatographic Method in the Diagnosis of Mannosidosis. Clinical Chemistry 24, 1576–1577 (1978)

    Google Scholar 

  5. Kurczynski, T.W., Kendzierski, K.S., Sewell, A.C., Kuczynski, T.W.: Urinary Oligosaccharides in Pregnant or Lactating Women: Pitfall in Screening. Clin. Chem. 39, 2346–2347 (1993)

    Google Scholar 

  6. Sewell, A.C.: Urinary Oligosaccharides. Techniques in Diagnostic Human Biochemical Genetics, 219–231 (1991)

    Google Scholar 

  7. Duvdevani-Bar, S., Edelman, S.: Visual Recognition and Categorization on the Basis of Similarities to Multiple Class Prototypes. Int. J. Comput. Vision 33, 201–228 (1999)

    Article  Google Scholar 

  8. Pekalska, E., Duin, R.P.W.: Dissimilarity Representations Allow for Building Good Classifiers. Pattern Recogn. Lett. 23, 943–956 (2002)

    Article  MATH  Google Scholar 

  9. Goldstone, R.L., Son, J.Y.: Similarity. In: Holyoak, K., Morrison, R. (eds.) Cambridge Handbook of Thinking and Reasoning, pp. 13–36. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  10. Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition - Fundations and Applications, vol. 64. World Scientific Publishing, Singapore (2005)

    Google Scholar 

  11. Lavine, B.K.: Clustering and Classification of Analytical Data. In: Meyers, R.A. (ed.) Encyclopedia of Analytical Chemistry: Instrumentation and Applications, pp. 9689–9710. John Wiley & Sons, Chichester (2000)

    Google Scholar 

  12. Kubat, M., Holte, R., Matwin, S.: Learning when Negative Examples Abound. In: European Conference on Machine Learning, pp. 146–153 (1997)

    Google Scholar 

  13. Skurichina, M., Raudys, S., Duin, R.P.W.: K-Nearest Neighbors Directed Noise Injection in Multilayer Perceptron Training. IEEE Transactions on Neural Networks 11 (2000)

    Google Scholar 

  14. Chawla, N.V., Japkowicz, N., Kolcz, A.: Editorial: Special Issue: Learning from Imbalanced Data Sets. Sigkdd Explorations 6, 1–6 (2004)

    Article  Google Scholar 

  15. Tax, D.M.J.: One-class Classification; Concept-learning in the Absence of Counter-examples. Ph.D. thesis: Delft University of Technology (2001)

    Google Scholar 

  16. Sousa, A.V., Mendonça, A.M., Campilho, A.: Chromatographic Pattern Classification. IEEE Trans. on Biomedical Engineering (2007), doi:10.1109/TBME.2008.919852

    Google Scholar 

  17. Paclik, P., Duin, R.P.W.: Dissimilarity-based Classification of Spectra: Computational Issues. Real-Time Imaging 9, 237–244 (2003)

    Article  Google Scholar 

  18. Paclik, P., Duin, R.P.W.: Classifying Spectral Data using Relational Representation. In: Proc. of Spectral Imaging Workshop, Graz, Austria (2003)

    Google Scholar 

  19. Sousa, A.V., Mendonça, A.M., Campilho, A.: Dissimilarity-based Classification of Chromatographic Profiles. Pattern Analysis and Applications (2007), doi:10.1007/s10044-008-0113-2

    Google Scholar 

  20. Pekalska, E., Paclik, P., Duin, R.P.W.: A Generalized Kernel Approach to Dissimilarity-based Classifcation. Journal of Machine Learning Research 2, 175–211 (2001)

    Article  MathSciNet  Google Scholar 

  21. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  22. Visa, S., Ralescu, A.: Learning Imbalanced and Overlapping Classes Using Fuzzy Sets. In: Workshop on Learning from Imbalanced Datasets II, ICML, Washington DC (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sousa, A.V., Mendonça, A.M., Campilho, A. (2008). Minimizing the Imbalance Problem in Chromatographic Profile Classification with One-Class Classifiers. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics