Skip to main content

Binary Image Registration Using Covariant Gaussian Densities

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

  • 1791 Accesses

Abstract

We consider the estimation of 2D affine transformations aligning a known binary shape and its distorted observation. The classical way to solve this registration problem is to find correspondences between the two images and then compute the transformation parameters from these landmarks. In this paper, we propose a novel approach where the exact transformation is obtained as a least-squares solution of a linear system. The basic idea is to fit a Gaussian density to the shapes which preserves the effect of the unknown transformation. It can also be regarded as a consistent coloring of the shapes yielding two rich functions defined over the two shapes to be matched. The advantage of the proposed solution is that it is fast, easy to implement, works without established correspondences and provides a unique and exact solution regardless of the magnitude of transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape context. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)

    Article  Google Scholar 

  2. Vandewalle, P., Sbaiz, L., Süsstrunka, S., Vetterli, M.: Registration of aliased images for super-resolution imaging. In: Visual Communications and Image Processing Conference. SPIE Proceedings, San Jose, CA, USA, vol. 6077, pp. 13–23 (2006)

    Google Scholar 

  3. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)

    Article  Google Scholar 

  4. Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys 24(4), 325–376 (1992)

    Article  Google Scholar 

  5. Zitová, B., Flusser, J.: Image registration methods: A survey. Image and Vision Computing 21(11), 977–1000 (2003)

    Article  Google Scholar 

  6. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  7. Flusser, J., Suk, T.: A moment-based approach to registration of images with affine geometric distortion. IEEE Transactions on Geoscience and Remote Sensing 32(2), 382–387 (1994)

    Article  Google Scholar 

  8. Kannala, J., Rahtu, E., Heikkilä, J., Salo, M.: A new method for affine registration of images and point sets. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 224–234. Springer, Heidelberg (2005)

    Google Scholar 

  9. Heikkilä, J.: Pattern matching with affine moment descriptors. Pattern Recognition 37(9), 1825–1834 (2004)

    Article  MATH  Google Scholar 

  10. Mann, S., Picard, R.W.: Video orbits of the projective group a simple approach to featureless estimation of parameters. IEEE Transactions on Image Processing 6(9), 1281–1295 (1997)

    Article  Google Scholar 

  11. Aguiar, P.M.Q.: Unsupervised simultaneous registration and exposure correction. In: Proceedings of International Conference on Image Processing, Atlanta, GA, USA, pp. 361–364. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  12. McNeill, G., Vijayakumar, S.: Hierarchical procrustes matching for shape retrieval. In: Werner, B. (ed.) Proceedings of Computer Vision and Pattern Recognition, New York, vol. 1, pp. 885–894. IEEE, Los Alamitos (2006)

    Google Scholar 

  13. Hagege, R., Francos, J.M.: Parametric estimation of multi-dimensional affine transformations: An exact linear solution. In: Proceedings of International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, USA, vol. 2, pp. 861–864. IEEE, Los Alamitos (2005)

    Google Scholar 

  14. Hagege, R., Francos, J.M.: Linear estimation of sequences of multi-dimensional affine transformations. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, vol. 2, pp. 785–788. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  15. Simonson, K.M., Drescher, S.M., Tanner, F.R.: A statistics-based approach to binary image registration with uncertainty analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 112–125 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Domokos, C., Kato, Z. (2008). Binary Image Registration Using Covariant Gaussian Densities. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics