Abstract
We consider the estimation of 2D affine transformations aligning a known binary shape and its distorted observation. The classical way to solve this registration problem is to find correspondences between the two images and then compute the transformation parameters from these landmarks. In this paper, we propose a novel approach where the exact transformation is obtained as a least-squares solution of a linear system. The basic idea is to fit a Gaussian density to the shapes which preserves the effect of the unknown transformation. It can also be regarded as a consistent coloring of the shapes yielding two rich functions defined over the two shapes to be matched. The advantage of the proposed solution is that it is fast, easy to implement, works without established correspondences and provides a unique and exact solution regardless of the magnitude of transformation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape context. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)
Vandewalle, P., Sbaiz, L., Süsstrunka, S., Vetterli, M.: Registration of aliased images for super-resolution imaging. In: Visual Communications and Image Processing Conference. SPIE Proceedings, San Jose, CA, USA, vol. 6077, pp. 13–23 (2006)
Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)
Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys 24(4), 325–376 (1992)
Zitová, B., Flusser, J.: Image registration methods: A survey. Image and Vision Computing 21(11), 977–1000 (2003)
Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)
Flusser, J., Suk, T.: A moment-based approach to registration of images with affine geometric distortion. IEEE Transactions on Geoscience and Remote Sensing 32(2), 382–387 (1994)
Kannala, J., Rahtu, E., Heikkilä, J., Salo, M.: A new method for affine registration of images and point sets. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 224–234. Springer, Heidelberg (2005)
Heikkilä, J.: Pattern matching with affine moment descriptors. Pattern Recognition 37(9), 1825–1834 (2004)
Mann, S., Picard, R.W.: Video orbits of the projective group a simple approach to featureless estimation of parameters. IEEE Transactions on Image Processing 6(9), 1281–1295 (1997)
Aguiar, P.M.Q.: Unsupervised simultaneous registration and exposure correction. In: Proceedings of International Conference on Image Processing, Atlanta, GA, USA, pp. 361–364. IEEE, Los Alamitos (2006)
McNeill, G., Vijayakumar, S.: Hierarchical procrustes matching for shape retrieval. In: Werner, B. (ed.) Proceedings of Computer Vision and Pattern Recognition, New York, vol. 1, pp. 885–894. IEEE, Los Alamitos (2006)
Hagege, R., Francos, J.M.: Parametric estimation of multi-dimensional affine transformations: An exact linear solution. In: Proceedings of International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, USA, vol. 2, pp. 861–864. IEEE, Los Alamitos (2005)
Hagege, R., Francos, J.M.: Linear estimation of sequences of multi-dimensional affine transformations. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, vol. 2, pp. 785–788. IEEE, Los Alamitos (2006)
Simonson, K.M., Drescher, S.M., Tanner, F.R.: A statistics-based approach to binary image registration with uncertainty analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 112–125 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Domokos, C., Kato, Z. (2008). Binary Image Registration Using Covariant Gaussian Densities. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_45
Download citation
DOI: https://doi.org/10.1007/978-3-540-69812-8_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69811-1
Online ISBN: 978-3-540-69812-8
eBook Packages: Computer ScienceComputer Science (R0)