Skip to main content

Self-similarity of Images in the Fourier Domain, with Applications to MRI

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

  • 1689 Accesses

Abstract

Results presented in this paper represent part of an ongoing research programme dedicated to the resolution enhancement of Fourier domain magnetic resonance (MR) data. Here we explore the use of self-similarity methods that may aid in frequency extrapolation of such data. To this end, we present analytical and empirical results demonstrating the self similarity of complex, Fourier domain MR data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, S.K.: Multiscale methods in image modeling and image processing, Ph.D. Thesis, Dept. of Applied Mathematics, University of Waterloo (2005)

    Google Scholar 

  2. Alexander, S.K., Vrscay, E.R., Tsurumi, S.: A simple model for affine self-similarity of images. In: ICIAR (submitted, 2008)

    Google Scholar 

  3. Buades, A., Coll, B., Morel, J.: A review of image denoising, with a new one. SIAM Multiscale Modeling & Simulation 4(2), 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barbieri, M., Barone, P.: A two-dimensional Prony’s method for spectral estimation. IEEE Transactions on Acous, Sp., and Sig. Proc. 40(11), 2747–2756 (1992)

    Article  MATH  Google Scholar 

  5. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions Image Processing 16(8), 2080–2095 (2007)

    Article  Google Scholar 

  6. Fisher, Y.: Fractal image compression. Springer, New York (1995)

    Google Scholar 

  7. Forte, B., Vrscay, E.: 1. Theory of generalized fractal transforms and 2. Inverse problem methods for generalized fractal transforms. In: Fisher, Y. (ed.) Fractal image encoding and analysis. NATO ASI Series F, vol. 159. Springer, NY (1998)

    Google Scholar 

  8. Ghazel, M.: Adaptive fractal and wavelet denoising, Ph.D. Thesis, Dept. of Applied Mathematics, University of Waterloo (2004)

    Google Scholar 

  9. Haacke, M., Liang, Z., Izen, S.: Constrained reconstruction: A superresolution, optimal signal-to-noise alternative to the Fourier transform in magnetic resonance imaging. Medical Physics 16(3), 388–397 (1989)

    Article  Google Scholar 

  10. Haacke, M., Brown, R., Thompson, M., Venkatesan, R.: Magnetic resonance imaging: physical principles and sequence design. John Wiley & Sons, Inc., USA (1999)

    Google Scholar 

  11. Hinshaw, W., Lent, A.: An introduction to NMR imaging: from the Bloch equation to the imaging equation. Proceedings of the IEEE 71(3), 338–350 (1983)

    Article  Google Scholar 

  12. Kumaresan, R., Tufts, D.: Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing 30(6), 833–840 (1982)

    Article  Google Scholar 

  13. Liang, Z., Lauterbur, P.: Principles of magnetic resonance imaging, a signal processing perspective. IEEE Press, New York (2000)

    Google Scholar 

  14. Makhoul, J.: Linear prediction: a tutorial review. Proc. of the IEEE 63(4) (1975)

    Google Scholar 

  15. Mayer, G., Vrscay, E.: Iterated Fourier Transform Systems: A Method for Frequency Extrapolation. In: Kamel, M., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 728–739. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Mayer, G., Vrscay, E.: Measuring information gain for frequency-encoded super-resolution MRI. Magnetic Resonance Imaging 25(7), 1058–1069 (2007)

    Article  Google Scholar 

  17. Prony, R.: Essai experimental et analytique. Paris J. de l’Ecole Poly. 1, 24–76 (1975)

    Google Scholar 

  18. Ranganath, S., Jain, A.: Two-dimensional linear prediction models – Part I: Spectral factorization and realization. IEEE Transactions on Acoustics, Speech, and Signal Processing 33(1), 280–299 (1985)

    Article  Google Scholar 

  19. Vrscay, E.: A generalized class of fractal-wavelet transforms for image representation and compression. Can. J. Elect. & Comp. Eng. 23(1-2), 69–83 (1998)

    Google Scholar 

  20. Weiss, L., McDonough, R.: Prony’s Method, Z-Transforms, and Pade Approximation. SIAM Review 5(2), 145–149 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mayer, G.S., Vrscay, E.R., Lauzon, M.L., Goodyear, B.G., Mitchell, J.R. (2008). Self-similarity of Images in the Fourier Domain, with Applications to MRI. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics