Abstract
Results presented in this paper represent part of an ongoing research programme dedicated to the resolution enhancement of Fourier domain magnetic resonance (MR) data. Here we explore the use of self-similarity methods that may aid in frequency extrapolation of such data. To this end, we present analytical and empirical results demonstrating the self similarity of complex, Fourier domain MR data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alexander, S.K.: Multiscale methods in image modeling and image processing, Ph.D. Thesis, Dept. of Applied Mathematics, University of Waterloo (2005)
Alexander, S.K., Vrscay, E.R., Tsurumi, S.: A simple model for affine self-similarity of images. In: ICIAR (submitted, 2008)
Buades, A., Coll, B., Morel, J.: A review of image denoising, with a new one. SIAM Multiscale Modeling & Simulation 4(2), 490–530 (2005)
Barbieri, M., Barone, P.: A two-dimensional Prony’s method for spectral estimation. IEEE Transactions on Acous, Sp., and Sig. Proc. 40(11), 2747–2756 (1992)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions Image Processing 16(8), 2080–2095 (2007)
Fisher, Y.: Fractal image compression. Springer, New York (1995)
Forte, B., Vrscay, E.: 1. Theory of generalized fractal transforms and 2. Inverse problem methods for generalized fractal transforms. In: Fisher, Y. (ed.) Fractal image encoding and analysis. NATO ASI Series F, vol. 159. Springer, NY (1998)
Ghazel, M.: Adaptive fractal and wavelet denoising, Ph.D. Thesis, Dept. of Applied Mathematics, University of Waterloo (2004)
Haacke, M., Liang, Z., Izen, S.: Constrained reconstruction: A superresolution, optimal signal-to-noise alternative to the Fourier transform in magnetic resonance imaging. Medical Physics 16(3), 388–397 (1989)
Haacke, M., Brown, R., Thompson, M., Venkatesan, R.: Magnetic resonance imaging: physical principles and sequence design. John Wiley & Sons, Inc., USA (1999)
Hinshaw, W., Lent, A.: An introduction to NMR imaging: from the Bloch equation to the imaging equation. Proceedings of the IEEE 71(3), 338–350 (1983)
Kumaresan, R., Tufts, D.: Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing 30(6), 833–840 (1982)
Liang, Z., Lauterbur, P.: Principles of magnetic resonance imaging, a signal processing perspective. IEEE Press, New York (2000)
Makhoul, J.: Linear prediction: a tutorial review. Proc. of the IEEE 63(4) (1975)
Mayer, G., Vrscay, E.: Iterated Fourier Transform Systems: A Method for Frequency Extrapolation. In: Kamel, M., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 728–739. Springer, Heidelberg (2007)
Mayer, G., Vrscay, E.: Measuring information gain for frequency-encoded super-resolution MRI. Magnetic Resonance Imaging 25(7), 1058–1069 (2007)
Prony, R.: Essai experimental et analytique. Paris J. de l’Ecole Poly. 1, 24–76 (1975)
Ranganath, S., Jain, A.: Two-dimensional linear prediction models – Part I: Spectral factorization and realization. IEEE Transactions on Acoustics, Speech, and Signal Processing 33(1), 280–299 (1985)
Vrscay, E.: A generalized class of fractal-wavelet transforms for image representation and compression. Can. J. Elect. & Comp. Eng. 23(1-2), 69–83 (1998)
Weiss, L., McDonough, R.: Prony’s Method, Z-Transforms, and Pade Approximation. SIAM Review 5(2), 145–149 (1963)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mayer, G.S., Vrscay, E.R., Lauzon, M.L., Goodyear, B.G., Mitchell, J.R. (2008). Self-similarity of Images in the Fourier Domain, with Applications to MRI. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-69812-8_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69811-1
Online ISBN: 978-3-540-69812-8
eBook Packages: Computer ScienceComputer Science (R0)