Skip to main content

Measuring Graph Similarity Using Spectral Geometry

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

Abstract

In this paper we study the manifold embedding of graphs resulting from the Young-Householder decomposition of the heat kernel [19]. We aim to explore how the sectional curvature associated with the embedding can be used as feature for the purposes of gauging the similarity of graphs, and hence clustering them. To gauging the similarity of pairs of graphs, we require a means of comparing sets of such features without explicit correspondences between the nodes of the graphs being considered. To this end, the Hausdorff distance, and a robust modified variant of the Hausdorff distance are used. we experiment on sets of graphs representing the proximity image features in different views of different objects. By applying multidimensional scaling to the Hausdorff distances between the different object views, we demonstrate that our sectional curvature representation is capable of clustering the different views of the same object together.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biggs, N.L.: Algebraic graph theory. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  2. Chung, F.R.K.: Spectral graph theory. CBMS 92 (1997)

    Google Scholar 

  3. Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall, Boca Raton (1994)

    MATH  Google Scholar 

  4. Docarmo, M.: Differential geometry of curves and surfaces. Prentice-Hall, England Cliffs (1976)

    Google Scholar 

  5. Dubuisson, M., Jain, A.: A modified hausdorff distance for object matching, 566–568 (1994)

    Google Scholar 

  6. Grigor’yan, A.: Heat kernels on manifolds, graphs and fractals. European Congress of Mathematics I, 393–406 (2001)

    MathSciNet  Google Scholar 

  7. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianfaces. IEEE. Trans. Pattern Anal. Mach. Intell. 27, 328–340 (2005)

    Article  Google Scholar 

  8. Hein, M., Audibert, J., Von Luxburg, U.: From graphs to manifolds-weak and strong pointwise consistency of graph laplacians, 470–485 (2005)

    Google Scholar 

  9. Heut, B., Hancock, E.R.: Relational object recognition from large structural libraries. Pattern Recognition 32, 1895–1915 (2002)

    Article  Google Scholar 

  10. Horaud, R., Sossa, H.: Polyhedral object recognition by indexing. Pattern Recognition 28, 1855–1870 (1995)

    Article  Google Scholar 

  11. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE. Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993)

    Article  Google Scholar 

  12. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recogintion 36, 2213–2230 (2003)

    Article  MATH  Google Scholar 

  13. Sachs, H., Cvetkovic, D.M., Doob, M.: Spectra of graphs. Academic Press, London (1980)

    Google Scholar 

  14. Sengupta, K., Boyer, K.: Modelbase paritioning using property matrix spectra. Computer Vision and Imaging Understanding 70, 177–196 (1998)

    Article  MATH  Google Scholar 

  15. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE. PAMI 22, 888–905 (2000)

    Google Scholar 

  16. Shokoufandeh, A., Dickinson, S., siddiqi, K., Zucker, S.: Indexing using a spectral encoding of topological structure (1999)

    Google Scholar 

  17. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic. IEEE. Trans. Pattern Anal. Mach. Intell. 27, 1112–1124 (2005)

    Article  Google Scholar 

  18. Xiao, B., Hancock, E.R.: Heat kernel, riemannian manifolds and graph embedding. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 198–206. Springer, Heidelberg (2004)

    Google Scholar 

  19. Young, G., Householder, A.S.: Disscussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22 (1938)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

ElGhawalby, H., Hancock, E.R. (2008). Measuring Graph Similarity Using Spectral Geometry. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics