Abstract
In this paper we study the manifold embedding of graphs resulting from the Young-Householder decomposition of the heat kernel [19]. We aim to explore how the sectional curvature associated with the embedding can be used as feature for the purposes of gauging the similarity of graphs, and hence clustering them. To gauging the similarity of pairs of graphs, we require a means of comparing sets of such features without explicit correspondences between the nodes of the graphs being considered. To this end, the Hausdorff distance, and a robust modified variant of the Hausdorff distance are used. we experiment on sets of graphs representing the proximity image features in different views of different objects. By applying multidimensional scaling to the Hausdorff distances between the different object views, we demonstrate that our sectional curvature representation is capable of clustering the different views of the same object together.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biggs, N.L.: Algebraic graph theory. Cambridge University Press, Cambridge (1993)
Chung, F.R.K.: Spectral graph theory. CBMS 92 (1997)
Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall, Boca Raton (1994)
Docarmo, M.: Differential geometry of curves and surfaces. Prentice-Hall, England Cliffs (1976)
Dubuisson, M., Jain, A.: A modified hausdorff distance for object matching, 566–568 (1994)
Grigor’yan, A.: Heat kernels on manifolds, graphs and fractals. European Congress of Mathematics I, 393–406 (2001)
He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianfaces. IEEE. Trans. Pattern Anal. Mach. Intell. 27, 328–340 (2005)
Hein, M., Audibert, J., Von Luxburg, U.: From graphs to manifolds-weak and strong pointwise consistency of graph laplacians, 470–485 (2005)
Heut, B., Hancock, E.R.: Relational object recognition from large structural libraries. Pattern Recognition 32, 1895–1915 (2002)
Horaud, R., Sossa, H.: Polyhedral object recognition by indexing. Pattern Recognition 28, 1855–1870 (1995)
Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE. Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993)
Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recogintion 36, 2213–2230 (2003)
Sachs, H., Cvetkovic, D.M., Doob, M.: Spectra of graphs. Academic Press, London (1980)
Sengupta, K., Boyer, K.: Modelbase paritioning using property matrix spectra. Computer Vision and Imaging Understanding 70, 177–196 (1998)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE. PAMI 22, 888–905 (2000)
Shokoufandeh, A., Dickinson, S., siddiqi, K., Zucker, S.: Indexing using a spectral encoding of topological structure (1999)
Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic. IEEE. Trans. Pattern Anal. Mach. Intell. 27, 1112–1124 (2005)
Xiao, B., Hancock, E.R.: Heat kernel, riemannian manifolds and graph embedding. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 198–206. Springer, Heidelberg (2004)
Young, G., Householder, A.S.: Disscussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22 (1938)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
ElGhawalby, H., Hancock, E.R. (2008). Measuring Graph Similarity Using Spectral Geometry. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_51
Download citation
DOI: https://doi.org/10.1007/978-3-540-69812-8_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69811-1
Online ISBN: 978-3-540-69812-8
eBook Packages: Computer ScienceComputer Science (R0)