Skip to main content

A Method for Blur and Affine Invariant Object Recognition Using Phase-Only Bispectrum

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

Abstract

In this paper, we propose a novel method for recognizing objects in images in a way that is invariant to blur and affine transformation of the images. The method is based on a set of rotated and log-log sampled phase-only bispectrum slices of the images and their phase correlation. The method is invariant to centrally symmetric blur, such as linear motion or out of focus blur. Because of the normalization of the amplitude information, the method is also invariant to uniform illumination changes. The only known method having similar invariance properties is based on image moments. According to the experiments conducted, the proposed method outperforms the moment based method in the presence of various degradations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banham, M.R., Katsaggelos, A.K.: Digital image restoration. IEEE Signal Processing Mag. 14(2), 24–41 (1997)

    Article  Google Scholar 

  2. Wood, J.: Invariant pattern recognition: A review. Pattern Recognition 29(1), 1–17 (1996)

    Article  Google Scholar 

  3. Flusser, J., Suk, T.: Degraded image analysis: An invariant approach. IEEE Trans. Pattern Anal. Machine Intell. 20(6), 590–603 (1998)

    Article  Google Scholar 

  4. Flusser, J., Suk, T., Saic, S.: Recognition of blurred images by the method of moments. IEEE Trans. Image Processing 5(3), 533–538 (1996)

    Article  Google Scholar 

  5. Bentoutou, Y., Taleb, N., Mezouar, M.C.E., Taleb, M., Jetto, L.: An invariant approach for image registration in digital subtraction angiography. Pattern Recognition 35(12), 2853–2865 (2002)

    Article  MATH  Google Scholar 

  6. Flusser, J., Zitová, B.: Combined invariants to linear filtering and rotation. Int. J. Pattern Recognition and Artificial Intelligence 13(8), 1123–1136 (1999)

    Article  Google Scholar 

  7. Zhang, Y., Wen, C., Zhang, Y., Soh, Y.C.: Determination of blur and affine combined invariants by normalization. Pattern recognition 35(1), 211–221 (2002)

    Article  MATH  Google Scholar 

  8. Suk, T., Flusser, J.: Combined blur and affine moment invariants and their use in pattern recognition. Pattern Recognition 26(12), 2895–2907 (2003)

    Article  MathSciNet  Google Scholar 

  9. Ojansivu, V., Heikkilä, J.: Object recognition using frequency domain blur invariant features. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 243–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Ojansivu, V., Heikkilä, J.: A method for blur and similarity transform invariant object recognition. In: Proc. International Conference on Image Analysis and Processing (ICIAP 2007), Modena, Italy, pp. 583–588 (2007)

    Google Scholar 

  11. Ben-Arie, J., Wang, Z.: Pictorial recognition of objects employing affine invariance in the frequency domain. IEEE Trans. Pattern Anal. Machine Intell. 20(6), 604–618 (1998)

    Article  Google Scholar 

  12. Petrou, M., Kadyrov, A.: Affine invariant features from the trace transform. IEEE Trans. Pattern Anal. Machine Intell. 26(1), 30–44 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ojansivu, V., Heikkilä, J. (2008). A Method for Blur and Affine Invariant Object Recognition Using Phase-Only Bispectrum. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics