Skip to main content

An Algorithm for Binary Contour Objects Representation and Recognition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Abstract

Representation of an object in image for machine learning applications (recognition, retrieval, identification, etc.) has to be based on a previously chosen feature. Binary shape is a very popular and commendable one. It has many advantages and can be successfully used in many applications, especially in engineering. To achieve better characteristics, various shape transformations are used. Obviously, they should be robust to as many shape deformations as it is possible. In this paper results of exhaustive exploration of a new method are presented. This method is based on transformation from Cartesian to polar coordinates, but it overcomes few problems, that were not solved yet. Above all, the proposed transform is more robust to occlusion and noise, two the most challenging problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37, 1–19 (2004)

    Article  MATH  Google Scholar 

  2. Loncaric, S.: A survey on shape analysis techniques. Pattern Recognition 31, 983–1001 (1998)

    Article  Google Scholar 

  3. Mehtre, B.M., Kankanhalli, M.S., Lee, W.F.: Shape measures for content based image retrieval: a comparison. Information Processing & Management 33, 319–337 (1997)

    Article  Google Scholar 

  4. Avrithis, Y., Xirouhakis, Y., Kollias, S.: Affine-invariant curve normalization for object shape representation, classification, and retrieval. Machine Vision and Applications 13(2), 80–94 (2001)

    Article  Google Scholar 

  5. Kolesnikov, A., Franti, P.: Polygonal approximation of closed contours. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 778–785. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Shaked, D.: Invariant Signatures from Polygonal Approximations of Smooth Curves. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 451–462. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Glendinning, R.H., Herbert, R.A.: Shape classification, using smooth principal components. Pattern Recognition Letters 24(12), 2021–2030 (2003)

    Article  Google Scholar 

  8. Rauber, T.W., Steiger-Garcao, A.S.: 2-D form descriptors based on a normalized parametric polar transform (UNL transform). In: Proc. MVA 1992 IAPR Workshop on Machine Vision Applications (1992)

    Google Scholar 

  9. Kukharev, G., Borawski, M.: Recognition of aircraft images (in Polish). In: Proc. of 2nd Avionics Conference, vol. 1, pp. 343–350 (1998)

    Google Scholar 

  10. Kukharev, G.: Contour images invariants for recognition tasks (in Polish). In: Proc. of 4th Scientific Session in Computer Science, pp. 51–58 (1999)

    Google Scholar 

  11. Hupkens, T.M., de Clippeleir, J.: Noise and intensity invariant moments. Pattern Recognition Letters 16(4), 371–376 (1995)

    Article  Google Scholar 

  12. Lipson, P., Yuille, A.L., O’Keeffe, D., Cavanaugh, J., Taaffe, J., Rosenthal, D.: Deformable templates for feature extraction from medical images. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 413–417. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  13. Mokhtarian, F., Abbasi, S.: Shape similarity retrieval under affine transforms. Pattern Recognition 35(1), 31–41 (2002)

    Article  MATH  Google Scholar 

  14. Osowski, S., Nghia, D.D.: Fourier and wavelet descriptors for shape recognition using neural network – a comparative study. Pattern Recognition 35(9), 1949–1957 (2002)

    Article  MATH  Google Scholar 

  15. Chong, C.-W., Raveendran, P., Mukundan, R.: Translation and scale invariants of Legendre moments. Pattern Recognition 37(1), 119–129 (2004)

    Article  MATH  Google Scholar 

  16. Zhang, D., Lu, G.: Shape-based image retrieval using Generic Fourier Descriptor. Signal processing: Image Communication 17, 825–848 (2002)

    Article  MathSciNet  Google Scholar 

  17. Frejlichowski, D.: Trademark retrieval in the presence of occlusion. In: Klopotek, M.A., Wierzchon, S.T., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining. Advances in Soft Computing, Berlin Heidelberg, vol. 35, pp. 253–262 (2006)

    Google Scholar 

  18. Frejlichowski, D.: License plate recognition with significantly distorted characters. Polish Journal of Environmental Studies 15(4c), 42–45 (2006)

    Google Scholar 

  19. Mehtre, B.M., Kankanhalli, M.S., Lee, W.F.: Shape measures for content based image retrieval: a comparison. Information Proc. & Management 33, 319–337 (1997)

    Article  Google Scholar 

  20. Kukharev, G.: Digital Image Processing and Analysis (in Polish), Szczecin University of Technology Press (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frejlichowski, D. (2008). An Algorithm for Binary Contour Objects Representation and Recognition. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics