Skip to main content

Is Dense Optic Flow Useful to Compute the Fundamental Matrix?

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

Abstract

Estimating the fundamental matrix from a pair of stereo images is one of the central problems in stereo vision. Typically, this estimation is based on a sparse set of point correspondences that has been obtained by a matching of characteristic image features. In this paper, however, we propose a completely different strategy: Motivated by the high precision of recent variational methods for computing the optic flow, we investigate the usefulness of their dense flow fields for recovering the fundamental matrix. To this end, we consider the state-of-the-art optic flow method of Brox et al. (ECCV 2004). Using non-robust and robust estimation techniques for determining the fundamental matrix, we compare the results computed from its dense flow fields to the ones estimated from a RANSAC method that is based on a sparse set of SIFT-matches. Scenarios for both converging and ortho-parallel camera settings are considered. In all cases, the computed results are significantly better than the ones obtained by the RANSAC method – even without the explicit removal of outliers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black, M.J., Anandan, P.: Robust dynamic motion estimation over time. In: Proc. 1991 IEEE Conference on Computer Vision and Pattern Recognition, Maui, HI, June 1991, pp. 292–302. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  2. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Google Scholar 

  3. Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision 70(3), 257–277 (2006)

    Article  Google Scholar 

  4. Chaterjee, S., Hadi, A.: Sensitivity Analysis in Linear Regression. Wiley, New York (1988)

    Google Scholar 

  5. Faugeras, O., Luong, Q.-T., Papadopoulo, T.: The Geometry of Multiple Images. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  6. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–385 (1981)

    Article  MathSciNet  Google Scholar 

  7. Frahm, J.-M., Pollefeys, M.: RANSAC for (quasi-) degenerate data (QDEGSAC). In: Proc. 2006 IEEE Conference on Computer Vision and Pattern Recognition, June 2006, pp. 453–460. IEEE Computer Society Press, New York (2006)

    Google Scholar 

  8. Harris, C.G., Stephens, M.: A combined corner and edge detector. In: Proc. Fourth Alvey Vision Conference, Manchester, England, August 1988, pp. 147–152 (1988)

    Google Scholar 

  9. Hartley, R.: In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 580–593 (1997)

    Article  Google Scholar 

  10. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  11. Huber, P.J.: Robust Statistics. Wiley, New York (1981)

    MATH  Google Scholar 

  12. Lehmann, S., Bradley, A.P., Clarkson, V.L., Williams, J., Kootsookos, P.J.: Correspondence free determination of the affine fundamental matrix. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 82–97 (2007)

    Article  Google Scholar 

  13. Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981)

    Article  Google Scholar 

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  15. Luong, Q.-T., Faugeras, O.D.: The fundamental matrix: theory, algorithms, and stability analysis. International Journal of Computer Vision 17(1), 43–75 (1996)

    Article  Google Scholar 

  16. Nir, T., Kimmel, R., Bruckstein, A.: Over-parameterized variational optical flow. International Journal of Computer Vision 76(2), 205–216 (2008)

    Article  Google Scholar 

  17. Rousseeuw, P., Leroy, A.: Robust Regression and Outlier Detection. Wiley, Chichester (1987)

    MATH  Google Scholar 

  18. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  19. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47(1-3), 7–42 (2002)

    Article  MATH  Google Scholar 

  20. Torr, P., Murray, D.: The development and comparison of robust methods for estimating the fundamental matrix. International Journal of Computer Vision 24(3), 271–300 (1997)

    Article  Google Scholar 

  21. Weng, J., Huang, T., Ahuja, N.: Motion and structure from two perspecitve views: algorithms, error analysis and error estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(5), 451–476 (1989)

    Article  Google Scholar 

  22. Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.-T.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence 78, 87–119 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mainberger, M., Bruhn, A., Weickert, J. (2008). Is Dense Optic Flow Useful to Compute the Fundamental Matrix?. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics