Skip to main content

Discovering Constrained Substructures in Bayesian Trees Using the E.M. Algorithm

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

  • 1708 Accesses

Abstract

We present an Expectation-Maximization learning algorithm (E.M.) for estimating the parameters of partially-constrained Bayesian trees. The Bayesian trees considered here consist of an unconstrained subtree and a set of constrained subtrees. In this tree structure, constraints are imposed on some of the parameters of the parametrized conditional distributions, such that all conditional distributions within the same subtree share the same constraint. We propose a learning method that uses the unconstrained subtree to guide the process of discovering a set of relevant constrained substructures. Substructure discovery and constraint enforcement are simultaneously accomplished using an E.M. algorithm. We show how our tree substructure discovery method can be applied to the problem of learning representative pose models from a set of unsegmented video sequences. Our experiments demonstrate the potential of the proposed method for human motion classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: ICCV, pp. 1395–1402 (2005)

    Google Scholar 

  2. Burl, M.C., Weber, M., Perona, P.: A probabilistic approach to object recognition using local photometry and global geometry. In: ECCV-II, pp. 628–641 (1998)

    Google Scholar 

  3. Carneiro, G., Lowe, D.: Sparse flexible models of local features. In: ECCV(3), pp. 29–43 (2006)

    Google Scholar 

  4. Crandall, D.J., Huttenlocher, D.P.: Weakly Supervised Learning of Part-Based Spatial Models for Visual Object Recognition. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 16–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. Royal Stat. Soc. 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  6. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: VS-PETS (October 2005)

    Google Scholar 

  7. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vision 61(1), 55–79 (2005)

    Article  Google Scholar 

  8. Fergus, R., Perona, P., Zisserman, A.: Weakly supervised scale-invariant learning of models for visual recognition. Int. J. Comput. Vision 71(3), 273–303 (2007)

    Article  Google Scholar 

  9. Filipovych, R., Ribeiro, E.: Combining models of pose and dynamics for human motion recognition. In: ISVC, Lake Tahoe, USA (November 2007)

    Google Scholar 

  10. Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Transactions - Computers 22, 67–92 (1977)

    Article  Google Scholar 

  11. Geiger, D., Heckerman, D.: A characterization of the dirichlet distribution with application to learning bayesian networks. In: UAI, pp. 196–207 (1995)

    Google Scholar 

  12. Jorge, P.M., Abrantes, A.J., Marques, J.S.: Tracking with bayesian networks: extension to arbitrary topologies. In: ICIP (2), pp. 402–405 (2005)

    Google Scholar 

  13. Khan, Z., Balch, T., Dellaert, F.: Mcmc-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(11), 1805–1918 (2005)

    Article  Google Scholar 

  14. Krebs, B., Korn, B., Burkhardt, M.: A task driven 3d object recognition system using bayesian networks. In: ICCV, pp. 527–532 (1998)

    Google Scholar 

  15. Laptev, I., Lindeberg, T.: Space-time interest points. In: ICCV, Nice, France (October 2003)

    Google Scholar 

  16. Niculescu, R.S., Mitchell, T.M., Rao, R.B.: Bayesian network learning with parameter constraints. J. Mach. Learn. Res. 7, 1357–1383 (2006)

    MathSciNet  Google Scholar 

  17. Park, S., Aggarwal, J.K.: Semantic-level understanding of human actions and interactions using event hierarchy. In: CVPRW 2004, vol. 1, p. 12 (2004)

    Google Scholar 

  18. Piater, J.H., Grupen, R.A.: Feature learning for recognition with bayesian networks. ICPR 01, 1017 (2000)

    Google Scholar 

  19. Rangarajan, A., Coughlan, J., Yuille, A.L.: A bayesian network framework for relational shape matching. In: ICCV 2003, p. 671 (2003)

    Google Scholar 

  20. Ryoo, M.S., Aggarwal, J.K.: Recognition of composite human activities through context-free grammar based representation. In: CVPR 2006, pp. 1709–1718 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filipovych, R., Ribeiro, E. (2008). Discovering Constrained Substructures in Bayesian Trees Using the E.M. Algorithm. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics