Skip to main content

Multi-resolution Texture Classification Based on Local Image Orientation

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

Abstract

The aim of this paper is to evaluate quantitatively the discriminative power of the image orientation in the texture classification process. In this regard, we have evaluated the performance of two texture classification schemes where the image orientation is extracted using the partial derivatives of the Gaussian function. Since the texture descriptors are dependent on the observation scale, in this study the main emphasis is placed on the implementation of multi-resolution texture analysis schemes. The experimental results were obtained when the analysed texture descriptors were applied to standard texture databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Publications, New York (1966)

    Google Scholar 

  2. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

    Google Scholar 

  3. Chellappa, R., Kashyap, R.L., Manjunath, B.S.: Model based texture segmentation and classification. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) The Handbook of Pattern Recognition and Computer Vision. World Scientific Publishing, Singapore (1998)

    Google Scholar 

  4. Chan, C., Lin, C.J.: LIBSVM: A library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  5. Dyer, C.R., Hong, T., Rosenfeld, A.: Texture classification using gray level co-occurrence based on edge maxima. IEEE Transactions on Systems, Man, and Cybernetics 10, 158–163 (1980)

    Article  Google Scholar 

  6. Flores, M.A., Leon, L.A.: Texture classification trough multiscale orientation histogram analysis. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 479–493. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Germain, C., Da Costa, J.P., Lavialle, O., Baylou, P.: Multiscale estimation of vector field anisotropy application to texture characterization. Signal Processing 83, 1487–1503 (2003)

    Article  MATH  Google Scholar 

  8. Guérin-Dugué, A., Oliva, A.: Classification of scene photographs from local orientation features. Pattern Recognition Letters 21, 1135–1140 (2000)

    Article  MATH  Google Scholar 

  9. Haralick, R.M.: Statistical and structural approaches to texture. Proc of IEEE 67, 786–804 (1979)

    Article  Google Scholar 

  10. Ilea, D.E., Ghita, O., Whelan, P.F.: Evaluation of local orientation for texture classification. In: Proc of the 3rd International Conference on Computer Vision Theory and Applications (VISAPP), Funchal, Madeira, Portugal (2008)

    Google Scholar 

  11. Kass, M., Witkin, A.: Analyzing oriented patterns. Computer Vision, Graphics, and Image Processing 37(3), 362–385 (1987)

    Article  Google Scholar 

  12. Liu, X., Wang, D.: Texture classification using spectral histograms. IEEE Transactions on Image Processing 12(6), 661–670 (2003)

    Article  Google Scholar 

  13. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)

    Article  Google Scholar 

  14. Materka, A., Strzelecki, M.: Texture analysis methods - A review, Technical Report, University of Lodz, Cost B11 Report (1998)

    Google Scholar 

  15. Mühlich, M., Aach, T.: A theory of multiple orientation estimation. In: Proc of the 9th European Conference on Computer Vision (ECCV), Graz, Austria (2006)

    Google Scholar 

  16. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  17. Ojala, T., Maenpa, T., Pietikainen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex - a new framework for empirical evaluation of texture analysis algorithms. In: Proc. of the 16th International Conference on Pattern Recognition, Quebec, Canada, pp. 701–706 (2002)

    Google Scholar 

  18. Petrou, M., Sevilla, P.G.: Image Processing: Dealing with Texture. John Wiley & Sons, Chichester (2006)

    Google Scholar 

  19. Zhou, J., Xin, L., Zhang, D.: Scale-orientation histogram for texture image retrieval. Pattern Recognition 36, 1061–1063 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghita, O., Whelan, P.F., Ilea, D.E. (2008). Multi-resolution Texture Classification Based on Local Image Orientation. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics