Abstract
The aim of this paper is to evaluate quantitatively the discriminative power of the image orientation in the texture classification process. In this regard, we have evaluated the performance of two texture classification schemes where the image orientation is extracted using the partial derivatives of the Gaussian function. Since the texture descriptors are dependent on the observation scale, in this study the main emphasis is placed on the implementation of multi-resolution texture analysis schemes. The experimental results were obtained when the analysed texture descriptors were applied to standard texture databases.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Publications, New York (1966)
Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)
Chellappa, R., Kashyap, R.L., Manjunath, B.S.: Model based texture segmentation and classification. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) The Handbook of Pattern Recognition and Computer Vision. World Scientific Publishing, Singapore (1998)
Chan, C., Lin, C.J.: LIBSVM: A library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
Dyer, C.R., Hong, T., Rosenfeld, A.: Texture classification using gray level co-occurrence based on edge maxima. IEEE Transactions on Systems, Man, and Cybernetics 10, 158–163 (1980)
Flores, M.A., Leon, L.A.: Texture classification trough multiscale orientation histogram analysis. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 479–493. Springer, Heidelberg (2003)
Germain, C., Da Costa, J.P., Lavialle, O., Baylou, P.: Multiscale estimation of vector field anisotropy application to texture characterization. Signal Processing 83, 1487–1503 (2003)
Guérin-Dugué, A., Oliva, A.: Classification of scene photographs from local orientation features. Pattern Recognition Letters 21, 1135–1140 (2000)
Haralick, R.M.: Statistical and structural approaches to texture. Proc of IEEE 67, 786–804 (1979)
Ilea, D.E., Ghita, O., Whelan, P.F.: Evaluation of local orientation for texture classification. In: Proc of the 3rd International Conference on Computer Vision Theory and Applications (VISAPP), Funchal, Madeira, Portugal (2008)
Kass, M., Witkin, A.: Analyzing oriented patterns. Computer Vision, Graphics, and Image Processing 37(3), 362–385 (1987)
Liu, X., Wang, D.: Texture classification using spectral histograms. IEEE Transactions on Image Processing 12(6), 661–670 (2003)
Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)
Materka, A., Strzelecki, M.: Texture analysis methods - A review, Technical Report, University of Lodz, Cost B11 Report (1998)
Mühlich, M., Aach, T.: A theory of multiple orientation estimation. In: Proc of the 9th European Conference on Computer Vision (ECCV), Graz, Austria (2006)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Ojala, T., Maenpa, T., Pietikainen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex - a new framework for empirical evaluation of texture analysis algorithms. In: Proc. of the 16th International Conference on Pattern Recognition, Quebec, Canada, pp. 701–706 (2002)
Petrou, M., Sevilla, P.G.: Image Processing: Dealing with Texture. John Wiley & Sons, Chichester (2006)
Zhou, J., Xin, L., Zhang, D.: Scale-orientation histogram for texture image retrieval. Pattern Recognition 36, 1061–1063 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ghita, O., Whelan, P.F., Ilea, D.E. (2008). Multi-resolution Texture Classification Based on Local Image Orientation. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_68
Download citation
DOI: https://doi.org/10.1007/978-3-540-69812-8_68
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69811-1
Online ISBN: 978-3-540-69812-8
eBook Packages: Computer ScienceComputer Science (R0)