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Abstract. B-scan ultrasound provides a non-invasive low-cost imaging solution
to primary care diagnostics. The inherent speckle noise in the images produced
by this technique introduces uncertainty in the representation of their textural
characteristics. To cope with the uncertainty, we propose a novel fuzzy feature
extraction method to encode local texture. The proposed method extends the
Local Binary Pattern (LBP) approach by incorporating fuzzy logic in the
representation of local patterns of texture in ultrasound images. Fuzzification
allows a Fuzzy Local Binary Pattern (FLBP) to contribute to more than a single
bin in the distribution of the LBP values used as a feature vector. The proposed
FLBP approach was experimentally evaluated for supervised classification of
nodular and normal samples from thyroid ultrasound images. The results
validate its effectiveness over LBP and other common feature extraction
methods.

Keywords: Fuzzy, Local Binary Patterns, Ultrasound, Thyroid nodules,
Support Vector Machines.

1 Introduction

Ultrasonography is a very appealing modality for imaging both soft tissue and bony
structures. Among the advantages of ultrasonography are low cost, real time imaging,
no side effects, no invasion, and ease of use. Despite the advantages of diagnostic
ultrasound, there are also two fundamental limitations, trade-off between resolution
and attenuation, and the presence of speckle noise and artifacts. When dealing with
superficial organs, like the thyroid gland, the resolution-attenuation limitation does
not apply [1]. However, noise parameter affects strongly diagnosis based on a visual
assessment of the structure and echogenicity, rather than objective measurement of
certain quantitative properties.

There have been attempts towards less subjective techniques for the evaluation of
ultrasound images, initially based on first-order statistical texture features. Local grey
level histograms have been utilized in some of the first studies [2][3] to measure local
textural information in ultrasound images. Several, more recent approaches [4-7],



proposed features extracted from co-occurrence matrices, to characterize tissue on
ultrasound images. Textural information encoded by means of Local Binary Patterns
(LBP) [8], has also been applied to detect uniform texture patterns on ultrasound
images [9-12]. However, the performance of feature extraction approaches such as co-
occurrence matrices and Local Binary Patterns is adversely affected by noise and
artifacts appearing in ultrasound images.

The aim of this study is to present and investigate the performance of a novel
approach for texture characterization of ultrasound images. Such images exhibit some
degree of uncertainty mainly due to speckle noise. However, most methodologies
employed for encoding textural information have little tolerance to uncertainty. A
texture descriptor, more capable of dealing with such textural information can be
developed by incorporating fuzzy logic in the Local Binary Pattern methodology.
This novel approach, called Fuzzy LBP (FLBP) enables more robust representation of
texture than the crisp (original) LBP in the inherently noisy US images.

This paper is organized in four sections. In Section 2, the original LBP and the
proposed FLBP feature extraction methods are described. In Section 3, a comparative
experimental evaluation reveals the advantageous performance of the proposed
method in comparison to other methods applied on real US images. In the last section
a short discussion on results, conclusions and future perspectives are presented.

2 Fuzzifying the Local Binary Patterns

The LBP feature extraction method is a theoretically and computationally simple, and
efficient methodology for texture analysis. The LBP operator was first introduced by
Ojala et al. in 1996 [8], as a non-parametric, grey-scale invariant texture analysis
model, which summarizes the local spatial structure of an image. This LBP operator
was based on a 3×3 local neighborhood (Fig. 1a) representing the local texture around
a central pixel. The value of each peripheral pixel of this neighborhood is thresholded
by the value of the central pixel in two possible values {0,1}. A total of 28 = 256
possible LBP codes can describe spatial binary patterns of 3×3 pixel neighborhoods.

In the LBP texture representation, a pattern is represented by a set of nine elements
P = {pcenter, p0, p1, . . . , p7}, where pcenter represents the intensity value of the central
pixel and pi (0 ≤ i ≤ 7) represent the intensity values of the peripheral pixels (Fig. 1a).
A 3×3 neighborhood can be characterized by a set of binary values di (0 ≤ i ≤ 7) (Fig.
1b), where

p0

p3

p5

p1 p2

pcenter p4

p6 p7

20

23

25

21 22

24

26 27

d0

d3

d5

d1 d2

d4

d6 d7

d0· 20

d3· 23

d5· 25

d1· 21 d2· 22

d4· 24

d6· 26 d7· 27

(a) (b) (c) (d)

LBPvalue

p0

p3

p5

p1 p2

pcenter p4

p6 p7

p0

p3

p5

p1 p2

pcenter p4

p6 p7

20

23

25

21 22

24

26 27

20

23

25

21 22

24

26 27

d0

d3

d5

d1 d2

d4

d6 d7

d0

d3

d5

d1 d2

d4

d6 d7

d0· 20

d3· 23

d5· 25

d1· 21 d2· 22

d4· 24

d6· 26 d7· 27

d0· 20

d3· 23

d5· 25

d1· 21 d2· 22

d4· 24

d6· 26 d7· 27

(a) (b) (c) (d)

LBPvalue

Fig. 1. Local Binary Pattern computation scheme.
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Based on these binary values, for each neighborhood a unique LBP code can be
derived as follows:
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Thus, the local microtexture information around a pixel, represented by a binary
pattern, can be encoded by a single integer code ]255,0[∈LBP .

Every pixel in an image generates a single LBP code. Then a histogram is created
to collect up the occurrences of different LBP codes from all pixels in the image. This
histogram forms the LBP feature vector, which characterize the image texture.

The LBP is based on hard thresholding of peripheral pixels, which makes texture
representation sensitive to noise. In order to enhance the LBP approach so as to cope
with the uncertainty introduced by the speckle noise, we have considered fuzzy logic,
as a means to cope with inexactness and improve discrimination power of LBP
approach in noise degraded images. Fuzzy logic resembles human decision making,
with ability to finding precise solutions in approximate datasets.

The fuzzification of the LBP approach includes the transformation of the input
variables to respective fuzzy variables, according to a set of fuzzy rules. To that
direction, we introduce two fuzzy rules to describe the relation between the intensity
values of the peripheral pixels pi and the central pixel pcenter of a 3×3 neighborhood as
follows:

Rule R0: The smaller pi is, with respect to pcenter, the greater the certainty that di is 0.

Rule R1: The bigger pi is, with respect to pcenter, the greater the certainty that di is 1.

According to the rules R0 and R1, two membership functions, ()0m and ()1m , can
be determined. Let function ()0m define the degree to which pi has a smaller grey
value than pcenter, and thus define the degree to which di is 0. As a membership
function ()0m we consider the decreasing function (Fig. 2) defined as follows:
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Fig. 2. Membership functions ()0m and ()1m for T=40, as a function of pi-pcenter.

On the other hand, membership function ()1m defines the degree to which pi has a
greater grey value than pcenter, and thus define the degree to which di is 1. The
membership function ()1m considered is (Fig. 2):

)(1)( 01 imim −= (4)

For both ()0m and ()1m , ]255,0[∈T represents a parameter that controls the degree of
fuzziness.

Although for the original LBP operator a single LBP code characterizes a 3×3
neighbourhood, in the proposed FLBP approach, a neighbourhood can be
characterized by more than one LBP code. Figure 3 presents an example of the FLBP
approach, where two LBP codes characterize a 3×3 neighbourhood. The degree to
which each LBP code characterizes a neighbourhood, depends on the membership
functions ()0m and ()1m . For a 3×3 neighbourhood, the contribution CLBP of each
LBP code in a single bin of the FLBP histogram is defined as:
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where }1,0{∈id and the LBP code can be obtained from Eq. 2. For each peripheral
pixel, id can be either 0 or 1, with a grade of ()0m or ()1m respectively, forming
different LBP codes with different contributions (Eq. 5). Thus, each 3×3
neighbourhood contributes to more than one bin of the FLBP histogram. The total
contribution of a 3×3 neighbourhood to the bins of an FLBP histogram is:
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Figures 5(a) and 5(c) illustrate two LBP histograms calculated from blocks
sampled from image regions corresponding to normal (Fig. 4c) and nodular tissue
(Fig. 4d), respectively. It can be observed that in these histograms 118 and 127 out of
255 bins have zero value respectively. This results in a small set of significant peaks
that can be identified for each histogram. The corresponding FLBP histograms are
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Fig. 3. A simple example of the FLBP computation schema on a 3×3 neighbourhood for
T=10. (a) 3×3 neighbourhood. (b) Fuzzy thresholded values along with membership values.
(c) Binomial weights. (d) LBP codes and corresponding contribution values.
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Fig. 4. (a) Example ultrasound image displaying a visible thyroid nodule. (b) The same
image with the boundaries of the nodule marked and two square sampled blocks, acquired
from normal parenchyma and from inside the nodule. (c) Square block sampled from normal
parenchyma. (d) Square block sampled from nodular tissue.



0

10

20

30

40

50
0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

LBP Codes

N
um

be
ro

fO
cc

ur
en

ce
s

LBP approach

0

10

20

30

40

50
0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

LBP Codes

N
um

be
ro

fO
cc

ur
en

ce
s

LBP approach

(a)

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

LBP Codes

N
um

be
ro

fO
cc

ur
en

ce
s

FLBP approach

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

LBP Codes

N
um

be
ro

fO
cc

ur
en

ce
s

FLBP approach

(b)

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

LBP Codes

N
um

be
ro

fO
cc

ur
en

ce
s

LBP approach

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

LBP Codes

N
um

be
ro

fO
cc

ur
en

ce
s

LBP approach

(c)

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

LBP Codes

N
um

be
ro

fO
cc

ur
en

ce
s FLBP approach

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

LBP Codes

N
um

be
ro

fO
cc

ur
en

ce
s FLBP approach

(d)
Fig. 5. Histograms obtained by LBP and FLBP approaches applied on images presented on
Fig.4(c) and Fig.4(d). (a) LBP histogram from normal thyroid tissue. (b) FLBP histogram
from normal thyroid tissue for T=5. (c) LBP histogram from nodular thyroid tissue. (d)
FLBP histogram from nodular thyroid tissue for T=5.



illustrated in Figs. 5(b) and 5(d). These histograms do not have bins with zero values
and there are more spikes, though limited in magnitude. This indicates that FLBP
histograms are more informative than LBP histograms. Considering that Shannon
entropy is defined as

∑ =
⋅−= 255

0
)log(

LPB LBPLBP ppH (7)

where pLBP is the probability of the LBP-th pattern, the more diversified the signal, the
higher the entropy, and the more the actual information. If all the bins have equal
probability, the maximum entropy will be reached. Apparently, the FLBP histograms
give greater of equal entropy than the crisp LBP histograms.

3 Results

For the evaluation of the feature extraction method proposed in this study a set of
classification experiments were carried out on real thyroid ultrasound images.
Ultrasound examinations were performed on 36 patients using a Philips HDI 5000
sonographic imaging system with an amplitude resolution of 8 bits (256 grey levels)
and a spatial resolution of 470×470 pixels. The parameters of the sonograph were
kept the same during all the examinations. A total of 65 thyroid ultrasound images
with one or more nodules was acquired. From each image, blocks of 32×32 pixels
were selected from inside the nodules and from the normal thyroid parenchyma (Fig.
4), forming a balanced set of 240 image samples.

The classification of the acquired samples was performed by a Support Vector
Machine (SVM) [13], a classifier based on the principle of structural risk
minimization that works well for high-dimensional input spaces and exhibit excellent
generalization performance. On that ground we used four SVM classifiers utilizing
linear, polynomial of second degree, radial basis, and sigmoid kernels respectively.
The classification accuracy was estimated by 10-fold cross validation [14].

Twenty FLBP feature sets were extracted by using different values for the
fuzzification parameter T in the range between zero and 20. For T=0, the crisp LBP
values were obtained. As a baseline method to compare the classification results
obtained by the proposed method we have considered the Co-occurrence Matrix (CM)
approach used in [15]. The best results for the different kernel functions are illustrated
in Fig. 6.

The maximum accuracy obtained is 84% and it was achieved with FLBP features
for T=5 and polynomial kernel. The best results obtained with the LBP and with the
CM features reached 62% and 70% respectively. Figure 6 shows that the FLBP
approach performs better than the LBP and the CM approach regardless of the kernel
used.



Moreover, it should be noted that the FLBP approach performs better than the LBP
approach for every T>0. The classification accuracies obtained for T≥0 with the
polynomial kernel are illustrated in Fig. 7.

4 Conclusions

In this study a novel Fuzzy Local Binary Pattern (FLBP) operator has been proposed,
for better representation of textures in ultrasound images in which uncertainty is
introduced by inherent noise. The proposed approach was experimentally evaluated
and compared with the crisp LBP and with the co-occurrence matrix approaches on a
real dataset of nodular and normal thyroid tissue ultrasound images. The experimental
classification results of this study demonstrate that the proposed FLBP approach:
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Fig. 7. Classification accuracy obtained with FLBP features for different values of the
fuzzification parameter T and polynomial SVM kernel.



• can considerably improve texture representation in noisy US images.
• results in significantly higher classification performance, as compared to the

CM approach.
Future work and perspectives include:

• Investigation of the performance of FLBP approach on ultrasound images
acquired from different sonographs.

• Integration of the proposed approach to a system for the assessment of the
thyroid gland.
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