Abstract
B-scan ultrasound provides a non-invasive low-cost imaging solution to primary care diagnostics. The inherent speckle noise in the images produced by this technique introduces uncertainty in the representation of their textural characteristics. To cope with the uncertainty, we propose a novel fuzzy feature extraction method to encode local texture. The proposed method extends the Local Binary Pattern (LBP) approach by incorporating fuzzy logic in the representation of local patterns of texture in ultrasound images. Fuzzification allows a Fuzzy Local Binary Pattern (FLBP) to contribute to more than a single bin in the distribution of the LBP values used as a feature vector. The proposed FLBP approach was experimentally evaluated for supervised classification of nodular and normal samples from thyroid ultrasound images. The results validate its effectiveness over LBP and other common feature extraction methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bushberg, J.T.: The Essential Physics of Medical Imaging. Lippincott Williams & Wilkins (2002) ISBN 0683301187
Mailloux, G., Bertrand, M., Stampfler, R., Ethier, S.: Local histogram information content of ultrasound B-mode echographic texture. Ultrasound in Medicine and Biology 11, 743–750 (1985)
Mailloux, G., Bertrand, M., Stampfler, R., Ethier, S.: Computer Analysis of Echographic Textures in Hashimoto Disease of the Thyroid. Journal of Clinical Ultrasound 14, 521–527 (1986)
Chikui, T., Okamura, K., Tokumori, K., Nakamura, S., Shimizu, M., Koga, M., Yoshiura, K.: Quantitative analyses of sonographic images of the parotid gland in patients with Sjögren’s syndrome. Ultrasound in Medicine and Biology 32, 617–622 (2006)
Raeth, U., Schlaps, D., Limberg, B., Zuna, I., Lorenz, A., Kaick, G., Lorenz, W., Kommerell, B.: Diagnostic accuracy of computerized B-scan texture analysis and conventional ultrasonography in diffuse parenchymal and malignant liver disease. Journal of Clinical Ultrasound 13, 87–99 (1985)
Llobet, R., Pérez-Cortés, J., Toselli, A., Juan, A.: Computer-aided detection of prostate cancer. International Journal of Medical Informatics 76, 547–556 (2006)
Vince, D.G., Dixon, K.J., Cothren, R.M., Cornhill, J.F.: Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images. Computerized Medical Imaging and Graphics 24, 221–229 (2000)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distribution. Pattern Recognition 29, 51–59 (1996)
Keramidas, E.G., Iakovidis, D., Maroulis, D., Karkanis, S.A.: Efficient and Effective Ultrasound Image Analysis Scheme for Thyroid Nodule Detection. In: Kamel, M., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 1052–1060. Springer, Heidelberg (2007)
Caballero, K., Barajas, J., Pujol, O., Savatella, N., Radeva, P.: In-vivo IVUS Tissue Classification A Comparison Between Normalized Image Reconstruction and RF Signals Analysis Progress in Pattern Recognition. Image Analysis and Applications 4225, 137–146 (2006)
Rotger, D., Radeva, P., Rodriguez, O., Mauri, J.: Near Real-Time Plaque Segmentation of IVUS. Computers in Cardiology 30, 69–72 (2003)
Brunenberg, E., Pujol, O., Romeny, B.H., Radeva, P.: Automatic IVUS segmentation of atherosclerotic plaque with Stop & Go snake. Medical Image Computing and Computer-Assisted Intervention 4191, 9–16 (2006)
Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)
Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press, London (2006)
Skouroliakou, C., Lyra, M., Antoniou, A., Vlahos, L.: Quantitative image analysis in sonograms of the thyroid gland. Nuclear Instruments and Methods in Physics Research 569, 606–609 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Iakovidis, D.K., Keramidas, E.G., Maroulis, D. (2008). Fuzzy Local Binary Patterns for Ultrasound Texture Characterization. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_74
Download citation
DOI: https://doi.org/10.1007/978-3-540-69812-8_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69811-1
Online ISBN: 978-3-540-69812-8
eBook Packages: Computer ScienceComputer Science (R0)