Skip to main content

The Role of Entropy: Mammogram Analysis

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

  • 1731 Accesses

Abstract

This paper introduces entropy as a feature for 1D signals. It proposes the ratio between signal perturbation (i.e. its part within minimum and maximum grey level) and the total signal energy as a measurement of entropy. Linear transformation of 2D signals into 1D signals is also illustrated together with the results. This paper also presents the experimentation carried out on different mammograms containing different pathologies (microcalcification and masses).A comparison between different entropy measures and ours is also illustrated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. National Alliance of Breast Cancer Organization Facts About Breast Cancer in the USA, New York (1997)

    Google Scholar 

  2. Schmidt, R.A., et al.: Computerized Detection of Lesions Missed by Mammography. In: Proc. 3rd. Inter. Workshop on Digital Mammography, Chicago, IL (1996)

    Google Scholar 

  3. Kropinsky, E.A.: The Future of Image Perception in Radiology. Academic Radiology 10(1) (2003)

    Google Scholar 

  4. Mikula, K., Sarti, A., Sgallari, F.: Handbook of Medical Image Analysis: Segmentation and Registration Models. In: Suri, J., et al. (eds.), Marcel Dekker Inc., New York (2004)

    Google Scholar 

  5. Stavos, A., Thickman, D., Rapp, C., Dennis, M., Parker, S., Sisney, G.A.: Solid breast modules: Use of sonography to distinguish between benign and malignant lesions. Radiology 196, 123–134 (1995)

    Google Scholar 

  6. Jackson, V.: Management of solid breast modules: What is the role of sonography? Radiology 196, 14–15 (1995)

    Google Scholar 

  7. Arger, P., Sehgal, C., Conant, E., Zuckerman, J., Rowlìng, S., Patton, J.: Interreader variability and predictive value of is descriptions of solid masses: Pilot study. Acad. Radiol. 8, 335–342 (2001)

    Article  Google Scholar 

  8. Madabhushi, A., Metaxas, D.N.: Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. ZEEE Trans. Med. Imag. 22(2), 155–169 (2003)

    Article  Google Scholar 

  9. Horsch, K., Giger, M.L., Venta, L.A., Vyborny, C.J.: Automatic segmentation of breast lesions on ultrasound. Med. Phys. 28(8), 1652–1659 (2001)

    Article  Google Scholar 

  10. Computerized diagnosis of breast lesions on ultrasound. Med. Phys. 29(2), 157–164 (2004)

    Google Scholar 

  11. Horsch, K., Giger, M.L., Vyborny, C.J., Venta, L.A.: Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography. Acad. Radiol. 11(3), 272–280 (2004)

    Article  Google Scholar 

  12. Drukker, K., Giger, M.L., Horsch, K., Kupinski, C.J., Vyborny, M.A., Mendelson, E.B.: Computerized lesion detection on breast ultrasound. Med. Phys. 29(7), 1438–1446 (2002)

    Article  Google Scholar 

  13. Drukker, K., Gìger, M.L., Vyborny, C.J., Mendelson, E.B.: Computerized detection and classification of cancer on breast ultrasound. Acad. Radiol. 11(5), 526–535 (2004)

    Article  Google Scholar 

  14. Chen, D.R., Chang, R.F., Kuo, W.J., Chen, M.C., Huang, Y.L.: Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks. Ultrasound Med. Biol. 28(10), 1301–1310 (2002)

    Article  Google Scholar 

  15. Huang, Y.L., Chen, D.R.: Watershed segmentation for breast tumor in 2-D sonography. UltrasoundMed. Biol. 30(5), 625–632 (2004)

    Article  Google Scholar 

  16. Chen, D.R., Chang, R.F., Wu, W.J., Moon, W.K., Wu, W.L.: 3-D breast ultrasound segmentation using active contour model. Ultrasound Med. Biol. 29(7), 1017–1026 (2003)

    Article  Google Scholar 

  17. Chang, R.-F., Wu, W.-J., Moon, W.K., Chen, W.M., Lee, W., Chen, D.-R.: Segmentation of breast tumor in three-dimensional ultrasound images using three-dimensional discrete active contour model. Ultrasound Med. Biol. 29(11), 1571–1581 (2003)

    Article  Google Scholar 

  18. Chang, R.-F., Wu, W.-J., Tseng, C.-C., Chen, D.-R., Moon, W.K.: 3-D snake for ultrasound in margin evaluation for malignant breast tumor excision using mammotome. IEEE Trans. Inf. Tech. Biomed. 7, 197–201 (2003)

    Article  Google Scholar 

  19. Chang, R.-F., Wu, W.-J., Moon, W.K., Chou, Y.H., Chen, D.-R.: Support vector Machines for diagnosis of Breast tumors on ultrasound images. Acad. Radiol. 10(2), 189–197 (2003)

    Article  Google Scholar 

  20. Sahiner, B., Chan, H.P., Roubidoux, M.A., Helvie, M.A., Hadjiiski, L.M., Ramachandran, A., Paramagul, C., LeCarpentier, G.L., Nees, A., Blane, C.: Computerized characterization of breast masses on threedimensional ultrasound volumes. Med. Phys. 31(4), 744–754 (2004)

    Article  Google Scholar 

  21. Doi, K., MacMahon, H., Katsuragawa, S., Nishikawa, R.M., Jiang, Y.: Computer-aided diagnosis in radiology: potential and pitfalls. Eur. J. Radiol. 31(2), 97–109 (1999)

    Article  Google Scholar 

  22. Giger, M.L.: Overview of computer-aided diagnosis in breast imaging. In: Computer-aided Diagnosis in Medical Imaging, pp. 167–176. Elsevier, Amsterdam (1998)

    Google Scholar 

  23. Jiang, Y., et al.: Improving breast cancer diagnosis with computer-aided diagnosis. Acedemic radiol. 6, 22–23 (1999)

    Article  Google Scholar 

  24. Huo, Z., et al.: Effectiveness of CAD in the diagnosis of breast cancer: an observer study on an independent database of mammograns. Radiology 7, 1077–1084 (2000)

    Google Scholar 

  25. Chan, H.P., et al.: Improvement of radiologists characterization of mammographic masses by using CAD: an ROC study. Radiology 212, 817–827 (1999)

    Google Scholar 

  26. Kundel, H.L., Nodine, C.F., Carmody, D.: Visual scanning, pattern recognition and decision-making in pulmonary nodule detection. Invest Radiol 13, 175–181 (1978)

    Article  Google Scholar 

  27. Mello-Thoms: Perception of breast cancer: eye-position analysis of mammogram interpretation. Acad Radiol 10, 4–12 (2003)

    Google Scholar 

  28. Julesz, B.: A theory of Preattentive texture discriminant based on first-order statisics of texture. Biological Cybernetics 41, 131–138 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  29. Casanova, A., Gesù, V.D., Bosco, G.L, Vitulano, S.: Entropy measures in image classification. In: 4rd International Workshop Hmp04: Human And Machine Perception (Santa Caterina di Pittinuri - Oristano), Italy (September 2004) ISBN 981-238-431-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vitulano, S., Casanova, A. (2008). The Role of Entropy: Mammogram Analysis. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics