Skip to main content

Image Level Fusion Method for Multimodal 2D + 3D Face Recognition

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

  • 1281 Accesses

Abstract

Most of the existing multimodal 2D + 3D face recognition approaches do not account for the dependency between 2D and 3D representations of a face. This dependency reduces the benefit of fusion at the late-stage feature or metric level. On the other hand, it is advantageous to fuse at the early stage. We propose an image-level fusion method that explores the dependency between modalities for face recognition. Facial cues from 2D and 3D images are fused into more independent and discriminating data by finding fusion axes that pass through the most uncorrelated information in the images. Experimental results based on our face database of 1280 2D + 3D facial samples from 80 adults show that our image-level fusion approach outperforms the pixel- and metric-level fusion approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bowyer, K.W., Chang, K., Flynn, P.: A Survey of Approaches and Challenges in 3D and Multi-modal 3D + 2D Face Recognition. Computer Vision and Image Understanding 101, 1–15 (2006)

    Article  Google Scholar 

  2. Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2D and 3D Face Recognition: A Survey. Pattern Recognition Letters 28, 1885–1906 (2007)

    Article  Google Scholar 

  3. Tsutsumi, S., Kikuchi, S., Nakajima, M.: Face Identification Using a 3D Gray-scale Image - A Method for Lessening Restrictions on Facial Direction. In: 3rd IEEE International Conference on Automatic Face and Gesture Recognition, Japan, pp. 306–311 (1998)

    Google Scholar 

  4. Wang, Y., Chua, C.S., Ho, Y.K.: Facial Feature Detection and Face Recognition from 2D and 3D Images. Pattern Recognition Letters 23, 1191–1202 (2002)

    Article  MATH  Google Scholar 

  5. Beumier, C., Acheroy, M.: Face Verification from 3D and Grey Level Clues. Pattern Recognition Letters 22, 1321–1329 (2001)

    Article  MATH  Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Expression-Invariant 3D Face Recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 62–70. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Chang, K.I., Bowyer, K.W., Flynn, P.J.: An Evaluation of Multimodal 2D+3D Face Biometrics. IEEE Transaction on Pattern Analysis and Machine Intelligence 27, 619–624 (2005)

    Article  Google Scholar 

  8. Lu, X., Jain, A.K.: Integrating Range and Texture Information for 3D Face Recognition. In: 7th IEEE Workshop on Applications of Computer Vision, Colorado, pp. 156–163 (2005)

    Google Scholar 

  9. Tsalakanidou, F., Malassiotis, S., Strintzis, M.G.: Face Localization and Authentication Using Color and Depth Images. IEEE Transaction on Image Processing 14, 152–168 (2005)

    Article  Google Scholar 

  10. Husken, M., Brauckmann, M., Gehlen, S., Von der Malsburg, C.: Strategies and Benefits of Fusion of 2D and 3D Face Recognition. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, California, p. 174 (2005)

    Google Scholar 

  11. Tsalakanidou, F., Tzovaras, D., Strintzis, M.G.: Use of Depth and Colour Eigenfaces for Face Recognition. Pattern Recognition Letters 24, 1427–1435 (2003)

    Article  MATH  Google Scholar 

  12. Abdelkader, C.B., Griffin, P.A.: Comparing and Combining Depth and Texture Cues for Face Recognition. Image and Vision Computing 23, 339–352 (2005)

    Article  Google Scholar 

  13. Godil, A., Ressler, S., Grother, P.: Face Recognition Using 3D Facial Shape and Color Map Information: Comparison and Combination. In: Biometric Technology for Human Identification. SPIE 5404, pp. 351–361 (2005)

    Google Scholar 

  14. Wang, Y., Chua, C.S.: Face Recognition from 2D and 3D Images Using 3D Gabor Filters. Image and Vision Computing 23, 1018–1028 (2005)

    Article  Google Scholar 

  15. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates, New Jersey (1988)

    MATH  Google Scholar 

  16. Konica Minolta Vivid 910 3D Digitizer, http://www.konicaminolta.com.sg

  17. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Transaction on Pattern Analysis and Machine Intelligence 19, 711–720 (1997)

    Article  Google Scholar 

  18. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Prentice Hall, New Jersey (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kusuma, G.P., Chua, CS. (2008). Image Level Fusion Method for Multimodal 2D + 3D Face Recognition. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics