
A Comparison of State-based Modelling Tools
for Model Validation

Emine G. Aydal1, Mark Utting2, Jim Woodcock1

University of York, UK1

University of Waikato, New Zealand2

Abstract. In model-based testing, one of the biggest decisions taken
before modelling is the modelling language and the model analysis tool to
be used to model the system under investigation. UML, Alloy and Z are
examples of popular state-based modelling languages. In the literature,
there has been research about the similarities and the differences between
modelling languages. However, we believe that, in addition to recognising
the expressive power of modelling languages, it is crucial to detect the
capabilities and the weaknesses of analysis tools that parse and analyse
models written in these languages. In order to explore this area, we have
chosen four model analysis tools: USE, Alloy Analyzer, ZLive and ProZ
and observed how modelling and validation stages of MBT are handled
by these tools for the same system. Through this experiment, we not
only concretise the tasks that form the modelling and validation stages
of MBT process, but also reveal how efficiently these tasks are carried
out in different tools.

1 Introduction

A model is a schematic description of a system, theory or phenomenon that
accounts for its known properties, and may be used for further study of its
characteristics. It translates the description of the features of the tested system
into a precise presentation of the expected behaviour [13].

Model-Based Testing (MBT) is a new and evolving technique for generating
a suite of test cases from requirements [10]. It helps to ensure a repeatable and
scientific basis for product testing, gives good coverage of all the behaviour of
the product and allows tests to be linked directly to requirements [11]. MBT is
also defined as the automation of the design of black-box tests [12, 11].

In the MBT context, a model serves two main purposes: it forms the basis for
test-case generation and it acts as an oracle for the System Under Test (SUT). In
order to fulfil these purposes, it is crucial that the modelling language in which
the model is described is capable of expressing the properties expected from that
model. These properties are studied under the title specification paradigm in [1].
Depending on the paradigm chosen, the characterisation of the specification dif-
fers, i.e., each paradigm describes the system by focusing on different aspects of
the system. History-based specifications specify a system by characterising its
maximal set of admissible histories whilst state-based specifications use admis-

VI Emine G. Aydal1, Mark Utting2, Jim Woodcock1

sible system states at some arbitrary snapshots. Transition-based specifications
focus on the transitions from one state to another and functional specifications
describe the system as a set of structured collection of mathematical functions [1].
In MBT, the Model Paradigm can be described as the combination of a speci-
fication paradigm and a modelling language. The specification paradigm chosen
determines the set of modelling languages that are able to express the proper-
ties required for that paradigm. Having said that, it is still open to discussion
how successful these languages are in expressing these properties and how well
the current tools fulfil our expectations in analysing the models written in these
languages.

In this study, we address this issue by modelling the same system in three
modelling languages that use the state-based specification paradigm and by
analysing these models with four different model analysis tools. Through this
study, we explore the impact of the selection of a modelling language and a tool
in the modelling and validation processes. In order to achieve this, we focus on
the creation of an abstract model of the SUT from informal requirements, and
the validation of the model via animation, e.g., snapshot generation. The term
snapshot means a valid, restricted, arbitrary instance of the model. Validity is
checked in accordance with the system invariants. Restrictions may be intro-
duced in order to reduce the search space and to concentrate on the area of
interest. The degree of arbitrariness changes from one modelling language/tool
to another, but the idea is to be able to generate an instance of the model or to
animate the operation with a minimum degree of user interaction.

The next section explains the contribution of this study in further detail.
Section 2 provides background information about the modelling languages and
the tools used in this study. The basic version of the case study is presented in
Section 3. Section 4 gives the extended version of the case study, explains the
expectations from the tools, and the results obtained. Finally, the experiment is
summarised in Section 5.

1.1 Contribution

The modelling languages covered in this study are UML enriched with OCL,
Alloy and Z. All of these languages are classified under the state-based specifica-
tion paradigm. They all model the system as a collection of variables, declare the
invariants that the system must satisfy and define the operations of the system
by its pre- and post-conditions [8]. Although they seem to have similar, if not
the same, targets, these languages differ a great deal in terms of their syntax
and analysis. In the literature, there has been research stating the differences
between UML and Alloy [6, 7] and between UML, Z and Alloy [5]. However,
these studies mainly focus on the languages and not the tools that parse and
analyse these languages.

In this experiment, we model a Course Assignment System in all these three
languages by using analysis tools that support these languages. The motivation
behind this experiment can be summarised as follows:

A Comparison of State-based Modelling Tools for Model Validation VII

– We use this experiment as a magnifying glass on the modelling and validation
stages of model-based testing. Through this study, we clarify the tasks carried
out during these stages for different modelling languages.

– By concretising the tasks during modelling and validation phases, we also re-
veal the expectations and the capabilities of the tools that analyse the models.

– In addition to these, in traditional MBT, the general tendency whilst validat-
ing an operation is to start from an input state and expect the tool to generate
an output state. The drawback of this approach is that the tester is respon-
sible for finding the initial valid state in order to carry out the rest of the
process. In this paper, we demonstrate an extension of this approach, where
possible, by generating both the input and the output state that represent the
operation’s execution.

– Furthermore, all the languages studied in this experiment have different de-
grees of formalism and they are generally being used by different groups of
people in modelling, validating, and testing different systems. However, these
communities may not be aware of the capabilities of the languages/tools that
are used by other communities and they may not follow the improvements
that occur in one another. The lack of such knowledge may have several im-
pacts. For instance, the members of one community may not be able to see the
benefits and the power of other modelling languages or analysis tools. There-
fore the usage of tools may not be efficient and the perspective necessary to
develop better testing tools may be limited.
Within this context, we take an example system and use all these different
tools to model and validate this system. Thus, this study not only concretises
the tasks to be done, but also reports the difficulties and the advantages
of modelling and validation by using the tools such as Alloy Analyzer, ProZ,
ZLive and USE. By doing so, we contribute in bridging the gap between formal,
semi-formal and perhaps non-formal environments.

2 Background

In this section, we give a brief overview of the modelling languages and the tools
used in this study.

UML Unified Modeling Language, OMG’s most-used specification, offers a rich
set of notations to model application structure and architecture as well as
business processes and data structures [2]. When used together with the
Object Constraint Language (OCL), it also provides a means to describe
model behaviour and metamodel constraints. There have been many studies
that use UML and OCL in different stages of MBT, ranging from model
validation to test case generation [3, 4]. After the popularity of UML/OCL
is raised, many tool developers produced tools with different capabilities.
Some examples to these tools are the OCL Compiler from the University
of Dresden (OCLCUD), UML Specification Environment (USE) by
Mark Richters in the University of Bremen, the OCL Compiler, produced

VIII Emine G. Aydal1, Mark Utting2, Jim Woodcock1

by Cybernetic Intelligence GMBH and KeY by the University of Karlsruhe.
After careful consideration, we decided to use the USE tool [17, 18] in this
study, especially due to its capabilities in generating automatic snapshots
of the system and in validating pre-/post-conditions through scenarios in
addition to its ability to verify the system invariants.

Z is a formal specification language used for describing and modelling computing
systems [14]. It is based on the standard mathematical notation used in
axiomatic set theory, first-order predicate logic and lambda calculus. We used
two analysis tools in this experiment to parse and analyse the Z model of our
case study: ProZ and ZLive. The ZLive animator is part of the CZT project,
which provides a framework for building formal methods tools, especially for
the Z specification language [19]. It provides a simple textual user interface
that handles Z in LaTeX and Unicode markup. ProZ is an extension of
the ProB animator and model checker to support Z specifications. It uses
the Fuzz type checker by Mike Spivey for extracting the formal specification
from a LATEXfile [9].

Alloy is a simple structural modelling language based on first-order logic [15,
16]. Alloy is similar to OCL, the Object Language of UML, but it has a more
conventional syntax and a simpler semantics, and is designed for automatic
analysis. Alloy is a fully declarative language, whereas OCL mixes declara-
tive and operational elements. Z was a major influence on Alloy, but unlike
Z, Alloy is first order. The Alloy Analyzer is a tool developed by the
Software Design Group at MIT, for analyzing models written in Alloy [15].
It allows the user to generate instances of invariants, animate the execution
of operations and check user-specified properties.

3 Case Study : Course Assignment System

The system modeled in this experiment is a simple Course Assignment System,
where the students and lecturers are assigned to certain courses. The initial
requirements and restrictions of the system are listed in Table 1. This section
provides the details of how the system is modeled in UML, Alloy and Z as well as
the expectations from the tools at this stage. The case study is extended further
in Section 4 to specify the pre/postconditions of several operations.

3.1 Modelling the static structure of the system

In this phase of the experiment, we create the basic model for the Course Assign-
ment Software, i.e., the static structure and the invariants of the system. The
expectation from the tool at this stage is to parse the model written by the user
and to create a valid, arbitrary instance of the model –an object diagram that
satisfies all the system invariants– in a reasonable amount of time. The existence
of such an instance increases confidence in the model by guaranteeing that there
are no conflicting invariants.

During this phase, we observed analysis tools in terms of their ability to:

A Comparison of State-based Modelling Tools for Model Validation IX

Req. No. Requirement Description

R0 The system consists of courses, students and lecturers.

R1 Each course must be subscribed by at least one student.

R2 Each course can only be subscribed by students from certain years of their
degree and this information is associated to each course.

R3 The total number of students for a course cannot exceed 7.

R4 Only one lecturer must be assigned to each course.

R5 Course ID must be unique.

R6 The lecturer assigned to a course must have at least 3 years of experience.

R7 A student must subscribe to at least 1 course.

R8 A student cannot subscribe to more than 6 courses.

R9 In his/her 4th year, the student cannot subscribe to more than 4 courses.

R10 The age of the students taking a course must be less than the age of the
lecturer assigned to that course.

R11 A lecturer can be assigned to 3 courses at most.

Table 1. Requirements of Course Assignment Software

– create and visualise a valid instance of the model
– run with less user interaction
– perform in a reasonable amount of time
– return adequate information about the execution of the model

3.2 Modelling in UML and OCL with USE

The USE tool allows users to specify system models, invariants, and pre- and
postconditions textually, and allows assertions to be checked [18]. The tool pro-
vides a multi-level platform where the model is defined in a .use file, the gener-
ation of an instance of the model is managed by an .assl file, the extra optional
invariants are imposed in a .invs file and all these files as well as other USE-
related commands are executed by calling .cmd files in command prompt of
the tool. The class diagram of the system, as shown in Figure 1, consists of 4

Fig. 1. Class Diagram derived in USE

classes: Course, Lecturer, Student and Person. Lecturer and Student classes are
subclasses of the abstract class Person. For each requirement listed in Table 1,
an invariant is written in OCL. The generation of snapshots is mainly driven by
the user through the .assl file. Following is the shortened version of the .assl file
used in this study.

X Emine G. Aydal1, Mark Utting2, Jim Woodcock1

procedure AssignCourses(countCourse:Integer, countStudent:Integer,

countLecturer:Integer)

var theConstants:SystemConstants, theCourses:Sequence(Course),

theStudents:Sequence(Student), theLecturers:Sequence(Lecturer),aCourse:Course ;

begin

theConstants := Create(SystemConstants);

... ---values of the constants are assigned

theCourses := CreateN(Course,[countCourse]);

for c:Course in [theCourses]

begin

[c].cID := Try([Sequence{1..10}

->reject(cID1| Course.allInstances.cID->exists(cID2|cID1=cID2))]);

... end;

theStudents := CreateN(Student,[countStudent]);

for s:Student in [theStudents]

begin

[s].year := Try([Sequence{1..4}]);

... -- Assignment of other attributes

aCourse := Try([Course.allInstances->asSequence

->select(c1| Course.allInstances

->forAll(c2|c1.attendees->size()<=c2.attendees->size()))]);

Insert(Assignment,[aCourse],[s]); --link creation

end;

theLecturers := CreateN(Lecturer,[countLecturer]);

for l:Lecturer in [theLecturers]

begin

[l].expYear := Try([Sequence{1..40}])

... -- Attribute assignment and Link creation with a Course Object

end;

end;

The order of objects generated by USE and the order of attribute assignment
is explicitly stated in the file. In the above case, it is set as SystemConstant
object, Course objects, Student objects and then Lecturer Objects. There are
both advantages and disadvantages of this approach. The obvious advantage is
that it is possible to give realistic values to the attributes. This ensures that the
snapshot generated is practical. In addition to this, the user can also control the
values assigned through reject and if-then-else expressions. However, there are
several drawbacks of this approach as explained below.

Finding the right order of objects: It is not straightforward to determine
which order produces the test cases more efficiently. To explore this more, we
changed the order of the object creation and ran the generator to find a valid
snapshot of the system. Table 2 shows the distinct orders associated to variation
numbers, the number of objects in the snapshot, the number of snapshots checked
before finding the valid snapshot and the number of seconds spent.

The field Order uses the letters S, L and C to represent Student, Lecturer and
Course objects respectively. The field Number of Objects shows the parameters
given to AssignCourses, i.e., number of Courses, the number of Student objects

A Comparison of State-based Modelling Tools for Model Validation XI

Variation
No

Order Number of
Objects

Snapshots checked Estimated time
spent(s)

1 C-S-L (1,1,1) 5 1s

2 C-L-S (1,1,1) 129 2s

3 L-S-C (1,1,1) 30721 312s

4 S-C-L (1,1,1) 5 1s

1 C-S-L (2,2,2) 677 4s

4 S-C-L (2,2,2) 2698 22s

5 S-C-L (*) (2,2,2) 677 4s

1 C-S-L (2,3,2) 677 4s

5 S-C-L (*) (2,3,2) Stopped after 92105 943s

Table 2. Effects of changes in order of object creation

and the number of Lecturer objects in the snapshot to be generated. Note that
the Estimated time spent is not an output of the tool, but is calculated by the
user. It is clear from the first four rows of Table 2 that the order of object
creation specified in the .assl file affects the valid snapshot generation process.

Finding the right order of links: We also implemented another version of
variation-4, which has the same object creation, but different link creation order.
Instead of generating the instances of the associations between the objects on-
the-go, in variation-5, we created all the links at the end and realised that this
improved the time spent.

Invariant check: In finding the valid snapshot, USE performs a Depth-first
search and this is why the order of object creation request becomes an issue to
be considered in writing the .assl file. It checks for invariant-conformance after
all the objects and links are created. We are aware that some of the invariants
can actually be embedded into the .assl file in creating objects by using reject
and if-then-else statements. This may shorten the time to find a valid snapshot
by restricting the values assigned to attributes of these objects, but it is, in fact,
a repetition of constraints that already exist in the model. We believe that an
on-the-fly invariant-check would improve the performance of USE a great deal.

3.3 Modelling in Alloy with Alloy Analyzer

In our first attempt to implement the system in Alloy, we used signatures for each
class in UML and defined the associations as attributes of the Course class. For
instance, cAttendees represented the set of Students in Course class. The problem
with this definition of Course was that Alloy is unable to analyse the invariants
that require a higher-order quantification. An example of these invariants is given
below where it states that a student cannot subscribe to more than 4 courses in
his/her 4th year.

fact LastYearLimit

{all s:Student, cSet : set Course {all c:cSet |

s in c.cAttendees and s.sYear = 4 => #cSet <= 4}}

XII Emine G. Aydal1, Mark Utting2, Jim Woodcock1

In our second attempt, we created another signature called Department and
defined the associations as relations between the classes.

some sig Course

{ cID: Int, cAllowedYears: set Int}

one sig Department

{ CourseAssignment : Student some -> some Course ,

TeachingAssignment : Course -> some Lecturer}

After this change, the invariant above could be written in first-order logic as:

fact LastYearLimit

{all d:Department, s:Student {s.sYear = 4 => # d.CourseAssignment[s] <= 4}}

Moreover, as shown in the definition of Department, Alloy also supports the
multiplicity concept in relations. The CourseAssignment relation imposes that
the students should subscribe to at least one course and that the courses should
have at least one attendee.

In Alloy, the run command generates a valid instance of a given model. One
of the first observations we made whilst executing this command is that the
bitwidth for integer values is set to 4 by default, i.e., the range of values that
an integer attribute can take is limited to [-8,7]. When there is a comparison of
an integer and a value that is higher than 7, the value is rounded to this range
and the comparison is made without any notification of an error or a warning.
For instance, when there are 8 student objects in the system and we request the
cardinality of the student objects, the result reads -8. As a workaround, we set
the bitwidth for integer to 6 in the run command, but we believe that rounding
without any notification may cause unforeseen problems in the system.

We also noticed that there is no string or character datatype. One way of
implementing strings is to define a string signature and define it as a set of
characters, which must also be declared as a signature. In order to simplify our
model, we performed a data abstraction for the attributes of type string.

In terms of snapshot generation, Alloy Analyzer is found to be very powerful.
Table 3 gives the results for several snapshots generated by using several SAT
solvers and different numbers of objects.

No. of
objects

No. of
vars

No. of pri-
mary vars

No. of
clauses

SAT Solver Time
spent(ms)

(1,1,1) 6625 643 19609
berkmin 1047+407ms

sat4j 844+109ms

(2,2,4) 13639 1294 37838
berkmin 2922+625ms

sat4j 3000+94ms

(2,4,10) 26828 2336 73231
berkmin 11797+1859ms

sat4j 12125+343ms

Table 3. Snapshot generation with Alloy Analyzer

A Comparison of State-based Modelling Tools for Model Validation XIII

The numbers of objects are represented in the form of (Course, Lecturer, Stu-
dent). The time spent, the number of variables, primary variables and clauses
checked are given by the tool after finding the snapshot. The field time spent is
given as an addition of two terms of which the first one represents the time whilst
the tool is generating the Canonical Normal Form (CNF) of the model and the
second is the duration of finding the snapshot that satisfies the invariants. As
shown in Table 3, SAT Solvers have an impact on the time spent, but the fact
that the user does not have to have any knowledge about the implementation of
these SAT Solvers other than selecting them, makes the process easy.

Another advantage of this tool is that the user’s role in the snapshot gener-
ation process is minimal. The user is not responsible for creating an extra file
to manage the object or link creation. The invariant check is managed by SAT
Solvers, so there is no concern as to where and when invariants are checked.

3.4 Modelling in Z with ZLive and ProZ

The Z specification of the course assignment is very similar to that of Alloy in
that the Z version has the similar classes in schema form. The invariants of the
system are embedded into the Department schema.

Department
studentSet : P Student
lecturerSet : P Lecturer
courseSet : P Course
CourseAssignment : Student ↔ Course
TeachingAssignment : Course 7→ Lecturer

domCourseAssignment ⊆ studentSet ∧ ranCourseAssignment ⊆ courseSet
domTeachingAssignment ⊆ courseSet ∧ ranTeachingAssignment ⊆ lecturerSet
∀ s : studentSet • #({s}C CourseAssignment) ≤ cMaxCourseSubscription
∀ s : studentSet ; listOfCourses : P courseSet |

listOfCourses = CourseAssignment(| {s} |)
∧ s.sYear = cExceptionalYear • #listOfCourses ≤ 4

∀ s : studentSet ; c : courseSet | s 7→ c ∈ CourseAssignment •
s.sYear ∈ c.cAllowedYears

∀ s : studentSet ; c : courseSet ; lec : lecturerSet | s 7→ c ∈ CourseAssignment
∧ c 7→ lec ∈ TeachingAssignment • s.age < lec.age

∀ c : courseSet • (#(CourseAssignment B {c}) ≤ cMaxAttendees)
∀ lec : lecturerSet • lec ∈ ranTeachingAssignment ⇒ lec.lExpYear ≥ cMinExpYear
∀ lec : lecturerSet • (#(TeachingAssignment B {lec}) ≤ cMaxLecturerAssignment)

As expected, the Z version of Department schema is more mathematical in terms
of syntax than the other two versions. This mathematical form certainly brings
formalism to Z, however it also makes comprehension more difficult for non-
mathematicians. Therefore, one of the main expectations from the tools that
analyse models written in LATEXor some other markup version of a formal lan-
guage like Z is to compensate this by providing more guidance to the user. In this
respect, the tools we used, ZLive and ProZ behave differently. ZLive allows the

XIV Emine G. Aydal1, Mark Utting2, Jim Woodcock1

user to communicate with the tool via a set of commands, whereas ProZ provides
a menu from which the user can choose what to do next. In terms of information
given for syntactical errors, ZLive returns more explanatory information than
ProZ.

In the modelling phase, we could parse and initialise the model. However, it is
not possible to generate an arbitrary instance of the model other than the initial
model. Note that in Z, the developer is responsible for writing a valid instance
of the model to initialise the model, whereas the tools that analyse Alloy and
UML could generate a valid snapshot without the user having to write the value
of each attribute that needs to have a value to satisfy the system invariants.

3.5 Remarks

Table 4 outlines the factors that have an effect on the search for a valid snapshot
for Alloy Analyzer and USE. Z tools are not considered here since we were only
able to initialise the model with the Init schema written by the user.

Factor USE Alloy Analyzer

Order of Object Creation Relevant N/A

Order of Attribute Value Assignment Relevant N/A

Selection of objects before linking to another ob-
ject (criteria considered at this stage)

Relevant N/A

Loop structure of object creation Relevant N/A

The point in which the invariants are analysed Relevant N/A

The range of variables Relevant Relevant

Constraint Solver embedded N/A Relevant

The number of objects to be created Relevant Relevant

Limitations on formulas in higher order logic N/A Relevant

Default Limitations on data types Not observable Relevant

Table 4. Factors affecting valid snapshot generation process

In terms of general tool usage, Table 5 summarises our observations.

Criteria USE Alloy An. ZLive ProZ

Create and visualise a valid instance of the model Yes Yes No No

Generation of snapshot without extra effort No Yes N/A N/A

Perform in a reasonable amount of time No Yes N/A N/A

Return information about the model execution Partial Yes N/A N/A

Provide adequate information about the errors
that occur during the modelling and execution

Yes Yes Yes No

Table 5. Observations about the tool usage

A Comparison of State-based Modelling Tools for Model Validation XV

4 Course Assignment - Extended Version

In the second phase of the experiment, we defined operations such as Subscribe(),
Unsubscribe(), Assign(), Deallocate() through their pre- and post-conditions.
We also created query operations to check the current status of the system. The
main aim in the second phase was to ensure that the pre- and post-conditions
associated to the operations are realistic. The word realistic implicitly contains
the following statements:

– There is no pre-condition that is false for all possible instances of the system.
– There is at least one post-state that satisfies all postconditions and system

invariants when the associated pre-state satisfies all pre-conditions and the
system invariants.

One of the indirect objectives of this activity in the validation step of MBT is
to find too strong/too weak system invariants, pre- and post-conditions.

In traditional MBT, it is generally the case that a pre-state is given as input
to the tool and the tool is expected to find the associated post-state by animating
the operation execution. This sort of animation is also called forward animation
and it is certainly one way of checking the aforementioned objectives related to
assertions and system invariants. Opposite of this, backward animation needs a
post-state as input and generates a pre-state. In our approach, we followed a
non-directed animation, where possible. Thus, the main expectation from the
modelling tool at this stage was to generate a snapshot with two instances of the
system where first one (pre-state) is the initial, valid instance of the model and
the second one (post-state) presents the system after the execution of the oper-
ation under investigation. The advantage of this approach is that the user does
not have to bring the system to the initial state by executing other operations,
yet it is still possible to impose restrictions on the pre- or post-state.

In addition to this, we also analysed the modelling tools in terms of their capa-
bility in animating the operations with less user interaction, generating pre/post
states of the operations and returning useful information about the execution.

4.1 Validation in UML and OCL with USE

The implementation of this phase with USE consists of the steps given in the
first column of Table 6. The second, third and fourth columns show whether
or not the tasks carried out by the user includes any intellectual or procedural
work. Intellectual work stands for the tasks where the user has to understand the
semantics of the operation and perform an action accordingly. Procedural work
represents the administrational tasks such as writing the output of the tool into
a new file, moving a file to a different location, etc.

Task-1 in Table 6 is explained in Section 3.2. Once the valid snapshot is gen-
erated, this is recorded and executed to actually bring the system into the state
described by the snapshot. In the third step, the system is brought into another
valid state where all the preconditions of the operation under investigation are
satisfied. It is possible to combine Task-1 and Task-3 to generate a valid snapshot

XVI Emine G. Aydal1, Mark Utting2, Jim Woodcock1

Task Command
Execution

Procedural
Work

Intellectual
Work

1. Generate a valid initial snapshot of the system Yes Yes Yes

2. Record and execute the snapshot Yes Yes No

3. Prepare the snapshot for the operation to be
executed (Precondition adjustment)

Yes Yes Yes

4. Enter the operation Yes No No

5. Animate the execution of the operation Yes Yes Yes

6. Exit the operation Yes No No

Table 6. Validation of operations in USE

that already satisfies preconditions. For some operations, Task-3 may be void if
the operation can run at any valid state of the system. We can analyse these
steps further in the following .cmd file for the Course Assignment example:

open c:/<root>/CourseAssignment.use

gen start -b c:/<root>/CourseAssignment1.assl AssignCourses(2,2,2)

gen result

read c:/<root>/snapshot.cmd

read c:/<root>/precond_Unsubscribe.cmd

!openter Student1 Unsubscribe(Student1,Course1)

read c:/<root>/Unsubscribe.cmd

!opexit true

The first three lines form Task-1 in Table 6. Before executing the next command,
the output of the tool is written into the file snapshot.cmd. At this point, we
have a system where there are 2 course objects, 2 student objects and 2 lecturer
objects linked in accordance with the system invariants. The assertions of the
Unsubscribe function as written in USE is given below:

context Student::Unsubscribe(s: Student, c: Course) : Boolean

pre UnsubscribePre1: s.courses->select(cID = c.cID)->size() = 1

pre UnsubscribePre2: s.courses->size() >= 1

post UnsubscribePost1: s.courses->select(cID = c.cID)->isEmpty()

post UnsubscribePost2: s.courses->size() = s.courses@pre->size() - 1

The commands written in precond Unsubscribe.cmd file ensures that the precon-
ditions of Unsubscribe function are satisfied when !openter command is executed.
The Unsubscribe.cmd file animates the operation and finally the postconditions
of the function are verified after the opexit command.

To conclude, the tool provides a platform where the user can animate the
execution of an operation, but it is user’s responsibility to create the .assl file
that generates the initial, valid instance of the model and to make sure that the
preconditions are satisfied. Given the tasks are carried out, the tool animates the
operation execution. The main drawback of this technique is its dependability
on the user. If the assertions of the system are not satisfied on Task-6, that does
not mean that there is no state that this operation is run successfully. It may
well be that the user could not bring the system in the right state to execute
the operation or did not implement the operation correctly.

A Comparison of State-based Modelling Tools for Model Validation XVII

4.2 Validation in Alloy with Alloy Analyzer

In Alloy, the operations are written as predicates. The implementation of Un-
subscribe function in Alloy is given below. The preconditions ensure that there
is a student assigned to a course and that the course has more than 1 attendee.
Postconditions state that the student is no longer an attendee of the course, the
number of attendees in that course is decremented by one and that no change
is made in the TeachingAssignment relation that represents the assignment of
lecturers to courses.

pred Unsubscribe(d, d’: DepartmentState) {

some s: Student, c: Course {

c in d.CourseAssignment[s] //pre1

c.~(d.CourseAssignment) >= 1 //pre2

d’.CourseAssignment = d.CourseAssignment - s->c //post1

d’.CourseAssignment[s] = #d.CourseAssignment[s] - 1 //post2

d’.TeachingAssignment = d.TeachingAssignment}} //extra

In the search of pre- and post-states of the system before and after the execution
of this operation, we use the following assertion:

assert CheckUnsubscribe{all d,d’:DepartmentState| not Unsubscribe[d , d’]}

In this assertion, we claim that the animation of Unsubscribe operation is not
possible and expect the tool to find a counter example. The existence of counter
example would mean that there is at least one state that allows the operation
to run and another state that represents the system after the execution of the
operation. Note that in both states, all the system invariants must be satisfied.

In Alloy, the call for assertions is managed by check command. In executing
this command, it is possible to fix the number of objects we would like to see in
the snapshot. If we do not specify this information explicitly, then the tool finds
the snapshots that have less number of objects.

In the validation process with Alloy Analyzer, we observed that less amount
of intellectual work is needed provided that the operation under investigation is
defined correctly. There is no concept of entering or exiting an operation. Having
said that, the user can still add further criteria to the assert statement to narrow
down the search space.

4.3 Validation in Z with ZLive

ZLive provides a command-prompt-like platform where the user can interact
with the tool by using commands that may have Z structure.

In order to facilitate the job of the user, we added Add ClassType opera-
tions into the Z specifications such as AddStudent, AddLecturer, etc. Thus, the
creation of objects are done by calling such operations. For instance, to add a
student into the student list, we can call the AddStudent schema with:

1.no constraint: do AddStudent which creates an arbitrary instance of the
Student schema

XVIII Emine G. Aydal1, Mark Utting2, Jim Woodcock1

2.some constraints: do [AddStudent | sYear = 4] which creates a Student
object whose sYear value is set to 4.

3.specific values: do[AddStudent | s? = 〈|sYear == 4, age == 21,name ==
1000|〉] which assigns all the attributes of the student object

This variety gives the user the flexibility to try different channels if the desired
instance cannot be produced. Especially when the search space is too large, the
tool may not be able to handle a call with no restriction, thus, imposing extra
constraints on the schema by using the second and third approach may reduce
the search space.

In addition to do operator, there is also semicolon -;- operator that can be
used in the same context. The difference between do operator and ; operator is
that the latter takes the current state as pre-state, and produces a post-state
by animating the execution of the operation. This approach is similar to ProZ
as explained in Section 4.4. The do operator, on the other hand, does not take
the current state into consideration, and, analogous to Alloy, generates a pre-
and a post-state that represents the states before and after the execution of the
operation under investigation. In fact, it is also possible to request the tool to
find the pre-state by specifying an explicit post-state.

When an operation cannot be run for a particular pre-state, the tool re-
turns no solution. An advantageous feature of the tool for such situations is the
why command which gives more insight about why no solution could be found.
However, the information given is very low level and assumes a certain level of
subject-related knowledge from the user.

Another implicit benefit of the tool is that it introduces only a limited number
of keywords and mainly uses Z syntax, thus, a Z-literate user would not have any
difficulty interacting with the tool after having a rough look at the keywords.

4.4 Validation in Z with ProZ

ProZ identifies a schema as an operation if all variables of the state and their
primed counterpart are declared in the operation, and no other schema in the
specification refers to the operation [9].

An advantage of using ProZ is that it provides the user with a Graphical
User Interface (GUI) where it is possible to observe the current values of the
attributes, the history of the operations that are animated and the list of enabled
operations at a given time, i.e., the operations whose preconditions are satisfied.
When the tool parses the system model, the first and the only operation available
is the Init operation. Init operation creates an empty set of student list, course
list and lecturer list. In order to facilitate the job of the user in creating objects,
we also added operations such as AddStudent, AddLecturer, etc.

The drawback of the GUI is that the tool actually attempts to list all the
possible calls with the parameters in the accepted range as enabled operations.
Since the number of such calls is high and both a timeout value and an animation
setting limit the number of calls listed, the user is given only some of the enabled
operations with a set of parameters. We noticed that the timeout button helps

A Comparison of State-based Modelling Tools for Model Validation XIX

to retrieve the commands that are not visible in the Enabled Operation section
by bypassing the timeout value, however this sometimes causes the application
to get into a non-responsive mode which cannot be interrupted (other than by
killing the application).

Although the idea of guiding the user by showing the enabled operations
is sensible, this actually takes the freedom of choosing the parameters of the
function from the user. It also makes it impossible to start from an arbitrary,
valid state other than the Init state. For instance, in order to test the behaviour
of Subscribe function when there are n Students, m Courses in the system,
we need to call the AddStudent operation n times and AddCourses operation
m times. In other words, it is not possible to create a valid, initial snapshot
with n Students and m Courses with one command. This means that the user
would not know whether it is possible to have a valid instance of the system
with that many objects without actually going through the process of creating
these objects. This is an obvious restriction especially if the tool is to be used
in test-case generation.

5 Conclusion

In this paper, we focused on the modelling and validation steps of MBT. The
tasks included in these steps are analysed in the scope of different model anal-
ysis tools. We modeled a Course Assignment system by using three state-based
modelling languages, namely Z, Alloy and UML, and analysed the models by
using four different tools: USE, Alloy Analyzer, ProZ and ZLive.

Table 7 provides a quick summary of our observations. Further explanations

Criteria USE Alloy An. ZLive ProZ

Animation with less user interaction Partial Yes Yes Yes

Generation of pre- and post-states No Yes Yes No

Information about the execution Yes Yes No Partial

Requires expertise in one modelling lan-
guage only

No Yes Yes Yes

Table 7. Observations about the tool usage

about our observations are given under the following titles.
Animation in both directions: Alloy and ZLive recognise the pre- and post-

states of the system and they are both capable of performing a non-directed,
forward and backward animation of an operation. ProZ is able to simulate a
forward animation and undo it, but it cannot discover a pre-state from a post-
state. USE is able to carry out forward animation only.

Reduction in the search space (Introducing further constraints): ZLive,
USE and Alloy have different ways of reducing the search space in generating
snapshots. USE takes advantage of .ins files by introducing extra invariants to the

XX Emine G. Aydal1, Mark Utting2, Jim Woodcock1

system, Alloy allows the user to write such invariants within assert statements
and ZLive uses the schema form as explained in Section 4.3. As far as we know,
ProZ does not provide such flexibility to the user.

Search mechanisms: Due to the SAT Solvers embedded in ProZ and Al-
loy Analyzer, these tools treat the model as a set of constraints and thus they
perform the search requests faster compared to ZLive and USE. The Alloy An-
alyzer is essentially a compiler that translates the problem to be analyzed into
a huge boolean formula. After the formula is handed to a SAT solver, the so-
lution is translated back by the Alloy Analyzer into the language of the model.
All problems are solved within a user-specified scope that bounds the size of
the domains, and thus makes the problem finite and reducable to a boolean for-
mula [15]. Technically, the Alloy Analyzer is a model finder, not a model checker
since given a logical formula, it finds a model of the formula. ZLive and USE, on
the other hand, make use of depth-first search algorithms to find the requested
snapshot, i.e., some valid state(s) of the system. In USE, as briefly described in
Section 3.2, the order of objects to be generated is explicitly written in .assl file
and this order certainly affects the search time. ZLive determines the order of
object creation on the fly based on an optimisation algorithm.

Speaking the language of the tool: In USE, the user has to learn how to
write .cmd, .assl and .use files in addition to OCL in which the assertions of
the operations and invariants are specified. Alloy Analyzer requires the user to
learn Alloy and to know the subtle differences between its constructs such as
fact, predicate, assert, etc. ProZ and ZLive both require the user to be able to
write the model in Z. With the command prompt ZLive provides, the user can
also interact with the tool by using several other keywords and Z schemas. In
ProZ, the user can only use the features provided in Graphical User Interface.
This may be an advantage in that the user does not have to learn extra key-
words/syntax, however, this also restricts the advanced user from being able to
carry out complicated yet insightful queries about the model.

In addition to above observations, we also examined the validation techniques
in close detail. Each tool has a different way of handling the tasks required to
accomplish a certain type of validation and in some cases, tools were not able to
realise certain tasks due to their inherent limitations. Table 8 provides a detailed
overview of the tasks performed during validation and the tool’s capabilities.

The tasks in Table 8 are divided into three categories: Valid State Generation,
Operation Animation and Sequencing. Valid State Generation includes the tasks
that involve in generating one state only. The first task in this group can be
done by all the tools, whereas the the task 1.2 can be achieved only by USE and
Alloy Analyzer. USE, however, needs intellectual input from the user in order
to accomplish this task. The definition of intellectual input and further details
about the task are given in Section 4.1. In ZLive and ProZ, the user has to start
the validation process with the init schema and it is mostly the case that this
schema initialises the system with no objects and therefore it would be fair to
put a No to these fields in the table. However, it is technically possible, though
not practical, to write an init schema that creates objects. Having said that, this

A Comparison of State-based Modelling Tools for Model Validation XXI

Task
No.

Task USE Alloy
An.

ZLive ProZ

1 Valid State Generation

1.1 Initialise the system with no objects Yes Yes Yes Yes

1.2 Automatically generate a valid non-empty
state

Yes
(intellect.)

Yes Yes
(intellect.)

Yes
(intellect.)

1.3 Generate a valid non-empty state by using
system operations

Yes
(intellect.)

No Yes Yes

1.4 Generate a valid state with constraints Yes
(intellect.)

Yes Yes No

2 Operation Animation

2.1 Forward Animation with input values sup-
plied by the user

Yes Yes Yes No

2.2 Forward Animation with no input values
given

Yes (lim.) Yes Yes (lim.) Yes (lim.)

2.3 Backward Animation with output values
supplied by the user

No Yes Yes No

2.4 Backward Animation with no output values
given

No Yes Yes (lim.) No

2.5 Non-directed animation No Yes Yes (lim.) No

2.6 Non-directed animation with constraints No Yes Yes (lim.) No

3 Sequencing

3.1 Update the current state after the animation
of an operation

Yes No Yes Yes

3.2 Animate a user supplied sequence of opera-
tions

Yes (lim.) No Yes Yes

3.3 Automatically explore all sequences of oper-
ations*

No No No Yes

Table 8. Validation techniques and the state-based modelling tools

would require the user to put intellectual work in writing the schema in order
to make sure that what is created in init schema does not conflict with system
invariants. In addition, it is not possible to represent the creation of m number
of objects in the init schema without explicitly defining each of them.

The difference between the tasks 1.2 and 1.3 is that 1.2 outputs a non-empty
state, e.g. m number of objects of type x and n number of objects of type y , in
one step with no user interaction. The task 1.3, on the other hand, may need
m + n steps in order to reach the same state.

The task 1.4 is useful especially when the user would like to start from a state
that has certain characteristics, e.g., a field is assigned to a particular value, the
range of some input is limited, etc. The only tool that is unable to perform this
task is ProZ since the GUI of the tool does not allow the user to enter such
inputs.

In terms of valid state generation, Alloy Analyzer is found to be the most
powerful tool except when a valid non-empty state is to be generated by using

XXII Emine G. Aydal1, Mark Utting2, Jim Woodcock1

system operations. The reason for this exception is related to the tasks in the
third category explained later in this section.

The second category in Table 8 is concerned with Operation Animation,
i.e., finding the pre- and/or post-states of a given operation. The reason for
marking USE as limited in Task 2.2 is that without the limitations in the range
of variables and maximum number of objects to be created, USE is not always
capable of finding an input state. The limitation of ProZ in performing the same
task (forward animation with no input values given) -strangely- comes from
one of its strengths. The tool is able to list the enabled operations with possible
parameter values. However, the list contains only a certain number of operations,
thus a user cannot execute the operation with certain parameter values unless
it is listed in the list. The section 4.4 gives further details about this issue.

In performing the tasks included in the second category, both Alloy and ZLive
are proved to be competent. In terms of efficiency, ALLOY performs better since
ZLive struggles to find a solution when the search space is too big.

In the final category -Sequencing-, the tasks focus mainly on animating a
sequence of operations. The only tool that is not capable of realising the tasks
3.1 and 3.2 is Alloy Analyzer. The reason for this is that Alloy Analyzer does
not keep track of state changes after an animation, i.e., it does not change the
current state to the post-state. Thus, according to our observations, it is superb
in performing one request at a time, but does not have the concept of carrying
out a sequence of related actions one after the other.

The task 3.3 (essentially model checking) is not directly related to the main
targets of this study, yet the tools’ capabilities in performing the task could be
observed. Other tasks that have not been explored in this study, but can be
classified under this category include, but are not limited to, deadlock detection,
feasibility check, etc.

It is our belief that the experiences reported in this paper shed light for
potential users as well as for the developers of such tools in understanding the
modelling and validation steps of MBT and the expectations in using model
analysis tools.

References

1. Van Lamsweerde A., Formal Specification; a Roadmap: The Future of Software
Engineering, Anthony Finkelstein (Ed.), ACM Press, ISBN 1-58113-253-0, 2000.

2. UML Resource Page, http://www.uml.org/, viewed 2007.
3. Bertolino A.,Marchetti E., Muccini H., Introducing a reasonably complete and co-

herent approach for MBT, Electr. Notes Theor. Comput. Sci., 116, 85-97 , 2005.
4. Cavarra A., Crichton C., Davies J., Hartman A., Jeron T., Maunier L., Using UML

for automatic test case generation, TACAS, 2002.
5. Jackson D., A Comparison of Object Modelling Notations: Alloy, UML and Z, MIT

Lab for Computer Science, 1999.
6. He Y., Comparison of the Modelling Languages Alloy and UML,

http://ww1.ucmss.com/books/LFS/CSREA2006/SER4949.pdf, 2006.

A Comparison of State-based Modelling Tools for Model Validation XXIII

7. Georg G., Bieman J., France R., Using Alloy and UML/OCL to Specify Run-Time
Configuration Management: A Case Study, LNI, Vol7, Workshop of the pUML-Group
held together with the UML, 2001.

8. Utting M., Pretschner A., Legeard B., A taxonomy of model-based testing, Working
paper series, University of Waikato, Department of Computer Science, 04/2006.

9. Using ProZ for Animation and Model Checking of Z Specifications,
http://asap0.cs.uni-duesseldorf.de/trac/prob/wiki/Using%20Z%20with%20ProB.

10. Dalal S.R., Jain A., Karunanithi N., Leaton J.M., Lott C.M., Patton G.C.,
Horowitz B.M., Model-based testing in practice, Proceedings of International Con-
ference of Software Engineering ICSE, 1999.

11. Utting M., Position paper: Model-based testing, Verified Software: Theories, Tools,
Experiments(VSTTE), 2006.

12. Utting M., Legeard B., Practical Model-Based Testing, Morgan Kauffman, 2007.
13. Bernard E., Bouquet F., Charbonnier A., Legeard B., Peureux F., Utting M.,

Torreborre E., Model-based Testing from UML Models, Lecture Notes in Informatics,
pp. 223230, 2006.

14. Z Notation, http://en.wikipedia.org/wiki/Z notation.
15. The Alloy Analyzer, http://alloy.mit.edu/.
16. Jackson D., Software Abstractions: Logic, Language, and Analysis, MIT Press,

2006.
17. UML Specifications Environment, http://www.db.informatik.uni-

bremen.de/projects/USE/.
18. Gogolla M., Buettner F., Richters M.,USE: A UML-based specification environ-

ment for validating UML and OCL. Sci. Comput. Program. 69(1-3): 27-34 ,2007.
19. CZT ZLive, http://czt.sourceforge.net/zlive/index.html.

