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Abstract. Models and metamodels play a cornerstone role in Model-
Driven Software Development (MDSD). Models conform to metamodels,
which usually specify domain-specific languages that allow to represent
the various facets of a system in terms of models. This paper discusses
the problem of calculating differences between models conforming to ar-
bitrary metamodels, something essential in any MDSD environment for
dealing with the management of changes and evolution of software mod-
els. We present a metamodel for representing the differences as models,
too, following the MDSD “everything is a model” principle. The Differ-
ence Metamodel, together with the difference and other related opera-
tions (do, undo and composition) presented here have been specified in
Maude and integrated in an Eclipse-developed environment.

Keywords: Model-driven software development, model difference, model
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1 Introduction

Model-Driven Software Development (MDSD) is becoming a widely accepted ap-
proach for developing complex distributed applications. MDSD advocates the use
of models as the key artifacts in all phases of development, from system specifi-
cation and analysis, to design and implementation. Each model usually addresses
one concern, independently from the rest of the issues involved in the construction
of the system.

Domain-Specific Modeling (DSM) is a way of designing and developing systems
that involves the systematic use of Domain Specific Languages (DSLs) to represent
the various facets of a system, in terms of models. Such languages tend to support
higher-level abstractions than general-purpose modeling languages, and are closer
to the problem domain than to the implementation domain. Thus, a DSL follows
the domain abstractions and semantics, allowing modelers to perceive themselves
as working directly with domain concepts. Furthermore, the rules of the domain
can be included into the language as constraints, disallowing the specification of
illegal or incorrect models. The abstract syntax of a DSL is usually described by a
metamodel.

So far, most of the efforts have been focused on the definition of models, meta-
models and transformations between them. Nowadays, other operations such as
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model subtyping [I], type inference [2] and model difference [3] are becoming in-
creasingly important, too, in order to provide full support to Model-driven Engi-
neering practices.

In particular, model difference is an essential operation in several software de-
velopment processes [4], including version and change management, software evo-
lution, model/data integration, etc. At the moment, techniques for visualizing and
representing model differences are mainly based on edit scripts and coloring tech-
niques [5l6[7]. However, these approaches do not produce models as results of their
calculations, and therefore cannot be fully integrated with other MDSD processes.
Furthermore, most of them do not fulfill other interesting properties required in
MDSD environments, such as composability [§]. Other techniques based on text,
data structure or models also exist but are usually restricted to a specific meta-
model (namely UML) [BI9JT0]. In this paper we present an approach to compare
models which conform to arbitrary metamodels. For this purpose we have defined a
Difference Metamodel so that differences are represented as models, too, that con-
form to such a metamodel. We have also defined a set of operations on models and
on differences that provide support for the calculation of differences, their applica-
tion and composition. The Difference Metamodel and those difference operations
have been specified in Maude using the formal notation proposed in [2] to repre-
sent models and metamodels, and integrated in our Eclipse developed environment
called Maudeling [IT].

There are several reasons that moved us to formalize our definitions and spec-
ifications in Maude. Firstly, in this way we can provide precise definitions of the
concepts and operations, at a high level of abstraction, and independently from
the particularities of any implementation programming language (such as Java,
Python, etc.). Secondly, having formal descriptions also allows the analysis of the
specifications produced. Finally, the fact that Maude specifications are executable
(with comparable performance to most commercial programming languages) has
permitted us to count on efficient implementations of the concepts and operations
described here, which are correct by construction.

The structure of this document is as follows. First, Sections 2] and Bl provide a
brief introduction to Maude, and how models and metamodels can be represented
in Maude, respectively. Section [ presents our definition and specification of the
model difference operation, and the Difference Metamodel in which the results
are expressed. SectionBlintroduces some other difference related operations, their
specification in Maude, and the supporting tool. Sectionflcompares our work with
other related proposals. Finally, Section [7] draws some conclusions and outlines
some future research activities.

2 Rewriting Logic and Maude

2.1 Introduction to Maude

Maude [T2/T3] is a high-level language and a high-performance interpreter and
compiler in the OBJ algebraic specification family. It supports membership-
equational logic and rewriting logic specification and programming of systems.
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Thus, Maude integrates an equational style of functional programming with
rewriting logic computation. Because of its efficient rewriting engine, able to
execute more than 3 million rewriting steps per second on standard PCs, and
because of its metalanguage capabilities, Maude turns out to be an excellent
tool to create executable environments for various logics, models of computa-
tion, theorem provers, or even programming languages. In addition, Maude has
been successfully used in software engineering tools and several applications [14].
We informally describe in this section those Maude’s features necessary for un-
derstanding the paper; the interested reader is referred to its manual [I3] for
more details.

Rewriting logic is a logic of change that can naturally deal with state and
with highly nondeterministic concurrent computations. A distributed system
is axiomatized in rewriting logic by an equational theory describing its set of
states and a collection of rewrite rules. Maude’s underlying equational logic is
membership-equational logic, a Horn logic whose atomic sentences are equalities
t =t/ and membership assertions of the form ¢ : S, stating that a term ¢ has
sort S.

Computation in a functional module is accomplished by using the equations
as simplification rules from left to right until a canonical form is found. Some
equations, like those expressing the commutativity of binary operators, are not
terminating but nonetheless they are supported by means of operator attributes,
so that Maude performs simplification modulo the equational theories provided
by such attributes, which can be associativity (assoc), commutativity (comm),
identity (id), and idempotence (idem).

While functional modules specify membership-equational theories, rewrite
theories are specified by system modules. A system module may have the same
declarations of a functional module plus rules of the form ¢t — ¢, where ¢ and ¢’
are terms. These rules specify the dynamics of a system in rewriting logic. They
describe the local, concurrent transitions possible in the system, i.e., when a
part of the system state fits the pattern ¢ then it can change to a new local state
fitting pattern ¢’. The guards of conditional rules act as blocking pre-conditions,
in the sense that a conditional rule can only be fired if the condition is satisfied.

2.2 Object-Oriented Specifications: Full Maude

In Maude, concurrent object-oriented systems are specified by object-oriented
modules in which classes and subclasses are declared. A class is declared with the
syntax class C' | a1:S51, ..., a,:Sn, where C' is the name of the class, a; are at-
tribute identifiers, and S; are the sorts of the corresponding attributes. Objects of
a class C' are then record-like structures of the form <O : C' | ai:v1, ..., an: vy, >,
where O is the name of the object, and v; are the current values of its attributes.
Objects can interact in a number of different ways, including message passing.
Messages are declared in Maude in msg clauses, in which the syntax and argu-
ments of the messages are defined.
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Fig. 1. Simple State Machine Metamodel

In a concurrent object-oriented system, the concurrent state, which is called
a configuration, has the structure of a multiset made up of objects and mes-
sages that evolves by concurrent rewriting using rules that describe the ef-
fects of the communication events of objects and messages. The predefined sort
Configuration represents configurations of Maude objects and messages, with
none as empty configuration and the empty syntax operator __ as union of
configurations.

Class inheritance is directly supported by Maude’s order-sorted type struc-
ture. A subclass declaration C < C’, indicating that C is a subclass of C’?, is a
particular case of a subsort declaration C < C’, by which all attributes, mes-
sages, and rules of the superclasses, as well as the newly defined attributes,
messages and rules of the subclass characterize its structure and behavior. This
corresponds to the traditional notion of subtyping: A is a subtype of B if every
<X> that satisfies A also satisfies B. Multiple inheritance is also supported in
Maude [12J15].

3 Formalizing Models and Metamodels with Maude

There are several notations to represent models and metamodels, from textual to
graphical. In [2] we presented a proposal based on the use of Maude, which not
only was expressive enough for these purposes, but also offered good tool support
for reasoning about models. In particular, we showed how some basic operations
on models, such as model subtyping, type inference, and metric evaluation, can
be easily specified in Maude, and made available in development environments
such as Eclipse. This section presents just a brief summary of that proposal.

In Maude, models are represented by configurations of objects. Nodes are rep-
resented by Maude objects. Nodes may have attributes, that are represented by
Maude objects’ attributes. Edges are represented by Maude objects’ attributes,
too, each one representing the reference to the target node of the edge.

Then, metamodels are represented by Maude object-oriented modules. They
contain the specification of the Maude classes to which the Maude objects (that
represent the corresponding models nodes) belong. In this way, models conform
to metamodels by construction.
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To illustrate this approach, the following piece of Maude specifications de-
scribe a Simple State Machine metamodel (depicted in Fig. [[) as a Maude
module.

(omod SimpleStateMachines is
protecting STRING .
class State |
name : String,
stateMachine : 0id,
incoming : Set{0id},
outgoing : Set{0id} .
class StateMachine |
containedStates : Set{0id},
initialState : Maybe{0id} .
class Transition |
name : String,
target : 0id,
src : 0id .
endom)

Metaclasses correspond to Maude classes. Meta-attributes are represented as
Maude attributes. Meta-references are represented as attributes too, by means
of sets of Maude object identifiers. Depending on the multiplicity, we can use:
a single identifier (if the multiplicity is 1); a Maybe{0id} which is either an
identifier or a null value, for representing a [0-1] multiplicity; a Set{0id} for
multiplicity [*]; or a List{0id} in case the references are ordered.

The instances of such classes will represent models that conform to the exam-
ple metamodel. For instance, the following configuration of Maude objects shows
a possible state machine model that conforms to the SimpleStateMachines
metamodel:

< ’SM : StateMachine | initialState : ’STi1,
containedStates : (’ST1, ’ST2) >
< ’ST1 : State | name : "St1", stateMachine : ’SM,

outgoing : ’TR, incoming : empty >
< ’ST2 : State | name : "St2", stateMachine : ’SM,
incoming : TR, outgoing : empty >
< ’TR : Transition | name : "Tr", src : ’ST1, target : ’ST2 >

It represents a simple state machine with two states, named St1 and St2, and
one transition (Tr) between them. St1 is the initial state of the state machine.

The validity of the objects in a configuration is checked by the Maude type
system. In addition, other metamodel properties, such as the valid types of the
object referenced, or the valid opposite of a reference (to represent bidirectional
relationships), are expressed in Maude in terms of membership axioms. Thus,
membership axioms will define the well-formedness rules that any valid model
should conform to: a configuration is valid if it is made of valid objects, with
valid attributes and references. The well-formedness rules of the simple state
machines metamodel can be found in [2].
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For those users familiar with the Ecore terminology, there is no need to define
the metamodel initially in Maude: ATL (Atlas Transformation Language) model
transformations have been defined from Ecore to Maude specifications.

Finally, note that since metamodels are models too, they can also be repre-
sented by configurations of objects. The classes of such objects will be the ones
specified in the metametamodels, for example, the classes that define the MOF
or Ecore metamodels. In this way, metamodels can be handled in the same way
as models are, i.e., operations defined over models can be applied to metamodels
as well.

4 Model Difference

Having described how models and metamodels can be represented in Maude, this
section introduces a model difference definition and its specification in Maude.
Thus, both a metamodel to represent model differences and operations to cal-
culate and operate with them are presented.

4.1 Representation: The Difference Metamodel

Our first requirement is that the results of a model difference operation can be
expressed as a model, so they can be fully integrated into other MDSD processes.
Since models conform to metamodels, we have to define a Difference Metamodel
with the elements that a difference may contain, and the relationships between
them. Furthermore, the Difference Metamodel should be general enough to be
independent of the metamodel of the source models.

Taking into account these characteristics, we have developed the Difference
Metamodel, which is depicted in Fig. 2l A difference model will contain all the
changes from a subtrahend model to a minuend model. As usual, we can distin-
guish three different kinds of changes: element addition, element deletion and
element modification. Thus, every element of a difference model (DiffElement)
will belong to ModifiedElement metaclass, DeletedElement metaclass or
AddedElement metaclass, depending on whether the element has been added,
deleted or modified, respectively. Elements which do not suffer from any changes,
will not be reflected in the difference model.

Object | +element DiffElement
|

1 1 VAN
1 [+oldElement

|De|etedEIement | |ModifiedEIement | |AddedEIement |

p

Fig. 2. Difference Metamodel
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Every difference element DiffElement will have a reference (element) to the
element that has suffered the change. In case of element modification
(ModifiedElement), the difference element will refer to both the element of
the minuend model (after the modification, element), and the element of the
subtrahend model (before the modification, c1dElement).

Modified, deleted and added elements from both operand models are added to
the difference model too, so that it is self-contained [§], i.e., the difference model
will contain all the changes, not relying on external sources of information (such
as the operand models). These elements can belong to any metaclass, since model
difference can be applied to models conforming to arbitrary metamodels. Thus
we introduce the Object metaclass (similar to EObject in Ecore) to represent
such arbitrary metaclasses.

The Difference Metamodel can be specified in Maude as follows:

(omod ModelDiff is

class Object .

class DiffElement | element : 0id .

class AddedElement .

class DeletedElement .

class ModifiedElement | oldElement : 0id .

subclasses AddedElement DeletedElement ModifiedElement < DiffElement .
endom)

As a matter of fact, class Object would not need to be explicitly specified
in Maude, because class Cid (class identifier) is defined in Maude for this pur-
pose [15]. However, we have defined it for understandability reasons.

4.2 Specification of the Difference Operation

Given a minuend model M, and a subtrahend model M,, both conforming
to some metamodels (not necessary the same, as we shall later see), the re-
sult of applying the model difference operation to them is another model My
conforming to the Difference Metamodel presented above, in such a way that
modelDiff (M,,, M) = M,.

The global comparison process is generally admitted as being composed of
two main parts: matching and differencing. The latter makes use of the former
to decide whether an element in the minuend model is the same (although pos-
sibly modified) as another in the subtrahend model. Decomposing the difference
operation in these two parts allows the reuse of both algorithms in different
applications, such as model patching [§]. Thus, we will firstly show how ele-
ments are matched, and secondly how the the difference is computed using this
information.

Matching Elements. Matching two models M; and M, conforming to some
metamodels (not necessary the same) means finding different objects from both
models that represent the same element. The result of applying the match oper-
ation to M; and M is a match model M, conforming to the Match Metamodel,
depicted in Fig. 3l
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Match

leftEl : Object
rightEl : Object
rate : double

Fig. 3. Match Metamodel

Match model elements (of class Match) symbolize links between two objects
that represent the same element. Thus, a match model element will refer to both
objects (1eftEl and rightEl) and will rate their similarity (expressed in terms
of a ratio between zero and one).

Matching objects using persistent identifiers. Since Maude objects have persis-
tent identifiers, checking whether two objects represent the same element can
be easily done by comparing their identifiers. If their identifiers are the same,
the two objects can be said to represent the same element; otherwise, the two
objects represent different elements.

Given variables 0, 01 and 02 of sort 0id; C1 and C2 of sort Cid; ATTS1 and
ATTS2 of sort AttributeSet; and CONF1 and CONF2 of sort Configuration, the
match operation can be specified in Maude as follows:

subsort MatchModel < Configuration .
op match : Configuration Configuration -> MatchModel .
eq match(< 0 : C1 | ATTS1 > CONF1, < 0 : C2 | ATTS2 > CONF2)
=< 0 : Match | leftEl : O, rightEl : 0, rate : 1.0 >
match(CONF1, CONF2)
eq match(CONF1, CONF2) = none [owise]

For every object of M; with the same identifier as another object of Ms, a
match object that relates them is added to the resulting model. Since [owise]
equations are only executed if no other equation holds, when no objects with
the same identifier are found (Maude provides configuration matching and reor-
ganization facilities) no more information is added to the match model.

Matching objects using structural similarities. Using persistent universal identi-
fiers makes the matching process simple and robust. However, counting on this
kind of identifiers is not always possible: if the two models to compare conform
to different metamodels, or have evolved independently, there is little chance
that an element being the “same” in the two models has the same identifier. In
addition, when comparing models not originally specified in Maude but, e.g., in
MOF or Ecore, we cannot assume that the model transformations from MOF
or Ecore to Maude will assign the same identifier to two different objects that
represent the same element.

A more sophisticated matching algorithm is thus needed. This kind of match-
ing algorithm should compare two elements by their structural similarities. There
are several structural matching algorithms described in the literature that can
be used, e.g. [I6/17]. One of the advantages of using Maude is that this kind of



Representing and Operating with Model Differences 149

algorithms are usually very easy to specify (compared to those specified in, e.g.,
Java) thanks to the configuration matching and reorganization facilities that
Maude provides.

In this paper we present the structural matching algorithm used in our Maudel-
ing framework [11]. The algorithm starts by comparing every object of a model
with every object of the other one. Comparing two objects means comparing
their metaclasses and structural features to obtain a final joint rate. This match
rate will represent the similarity between the two compared objects, which are
said to potentially match when the rate is greater than a given threshold (T'h).
At the end of the process, a sieve is applied to all potential matches in order to
pair only those objects that together obtain the biggest rate, taking into account
that a specific object can only belong to one match relationship.

Class and structural features match rates are obtained in the following way:

— Two metaclasses match if they are the same, or there exists an inheritance
relation between them.

1.0 if C1 = Cy
classRate(C1,C2) = < 0.9 if isSubtype(C1, Cs) or isSubtype(Ca, Ch)
0.0 otherwise

— Structural features are compared, and given a weight, depending on its
type. To obtain the final structural features rate, every attribute rate and
weight are jointly considered: sfRate((S1,S2,..5,), (R1, Ra,..Ry)) = wy *
rate(S1, R1) + wg x rate(Sa, R2) + ... + wy, x rate(Sy, Ry,).

If a structural feature’s upper cardinality is greater than 1 (i.e., if its value is
a collection), the average rate is calculated. If a structural feature is defined
only in one of the objects, a penalty is applied to the final sf Rate.

— Boolean attributes and enumerations match (with rate = 1.0) if they
have the same value (otherwise rate = 0.0).

— String attribute values distances are calculated using the Levenshtein al-
gorithm [I8]. The Levenshtein distance is the minimum number of opera-
tions (insertion, deletion, or substitution of a single character) needed to
transform one string into another. Depending on the resulting distance,
a different rate is given.

1.0 if levenshteinDist(Sy, S2) =

0.9 if levenshteinDist(Sy, So

nameRate(S1,52) = 0.5 if levenshteinDist(S1, So
0.1 if levenshteinDist(S1,S2) =
0.0 otherwise

\/\/\/\/
I
c,o RO o

— Numerical attribute values match rate is computed with a relative dis-
tance function (1 — I%lﬂlzz‘l limited to [0..1])

— References are matched recursively, i.e., objects referenced are compared
using the same match operation but without taking into account their

own references (to avoid cycles).
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Once the class and structural features match rates are calculated, the final
joint rate is obtained as follows:

finalRate = w, * classRate + wqy * s f Rate + wy, * nameRate

where finalRate, classRate, nameRate, sf Rate € [0..1], and the weights that
we have initially considered are w. = 0.5, wsy = 0.25,w, = 0.0. The threshold
value we normally use is Th = 0.66, although the weights and threshold are of
course user-defined and easily configurable.

It is worth noting that the weights and threshold values specified above do
not allow elements to potentially match if their metaclasses are not related.
In addition, a nameRate has been included in the equation. In many kinds of
models the attribute name is considered as an identifier. By including this rate
we allow elements of this kind of models to be better matched (assigning the
attribute name a bigger weight than any other structural feature). For instance,
setting the name weight to w,, = 0.25, will make objects with the same class and
same name to always potentially match. Attribute name values are compared in
the same way as string values, i.e., using the Levenshtein distance.

If the name rate is omitted (i.e., it is not considered in the computations:
wy, = 0.0), potential matches are harder: structural features should be more
strongly related because no identifier is provided. In all cases, i.e., either using
the name as an identifier or not, renamed elements can be detected (objects with
different name can potentially match).

Contrary to other approaches (e.g., [I6]) in which a model is seen as a tree
(levels are determined by the containment relationship), and only objects at the
same level are compared, our approach compares every object independently of
its depth in the tree. This decision implies more comparisons, but also brings
along interesting advantages: (a) moved elements through different levels can be
detected; and (b) failing to identify a match does not condition other poten-
tial matches below in the tree hierarchy. For example, refactoring is a common
technique used for making models evolve. One usual refactorization step is to
add packages to improve the grouping structure of the model. This is the kind
of change that affects the containment tree, and that can be missed by those
approaches that compare elements only at the same level of the tree.

Specifying the Calculation of Differences. As previously mentioned, the
model difference operation makes use of the match model in order to decide
whether one element in the minuend model is the same (although possibly mod-
ified) as another in the subtrahend model. Thus, in the global comparison process
the match model is calculated before the differencing part starts:

subsort DiffModel < Configuration .
op modelDiff : Configuration Configuration -> DiffModel .
op modelDiff : Configuration Configuration MatchModel -> DiffModel .
eq modelDiff (CONF1, CONF2) =
modelDiff (CONF1, CONF2, match(CONF1,CONF2))

In order to specify the behavior of the differencing part, we have identified
four different situations that may happen when calculating a model difference
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operation on an element: (1) the element appears in both models (minuend and
subtrahend) and has not been modified; (2) the element appears in both models
but has been modified; (3) the element only appears in the minuend model;
(4) the element only appears in the subtrahend model.

The following four Maude equations specify the modelDiff operation in each
case. In all of them we will use the following variables: 0, 01 and 02 of sort 0id;
C, C1 and C2 of sortCid; ATTS, ATTS1 and ATTS2 of sort AttributeSet; and CONF,
CONF1, CONF2 and MATCHM of sort Configuration.

In the first case, we have to check whether two objects (one belonging to the
minuend model, the other belonging to the subtrahend model) match, i.e., they
represent the same element, and belong to the same class and have the same
attribute values (remember that in Maude both object attributes and references
are expressed by Maude attributes). If this situation occurs, we have found an
element that has not been modified, and therefore no evidence of the element is
stored in the difference model:

ceq modelDiff(< 01 : C | ATTS > CONF1> < 02 : C | ATTS > CONF2, MATCHM)
= modelDiff (CONF1, CONF2, MATCHM)
if match(01, 02, MATCHM)

The match operation checks whether the corresponding match object that
relates 01 and 02 exists in the match model.

op match : 0id 0id Configuration -> Bool .

eq match(01, 02, < 0 : Match | leftEl : 01, rightEL : 02, ATTS > CONF)
= true .

eq match(01, 02, CONF) = false [owise]

In the second case, two objects represent the same element, but the element
has been modified, i.e., the two objects match, but either they belong to differ-
ent classes (Maude allows the dynamic reclassification of objects), or their at-
tributes have different values. In this case, we create an object instance of class
ModifiedElement with references to both the object of the subtrahend model
(before the modification, oldelement) and the object of the minuend model
(after the modification, element). Both operand models’ objects are added to
the difference model, but only with the relevant attributes, i.e., those that have
different values in both objects (storing both values, the old one and the new
one), or those that are specified in one object but not in the other (corresponding
to deleted attributes if the attributes are specified in objects of the subtrahend
model, or corresponding to added attributes if they are specified in objects of
the minuend model). The identifiers of the two added objects are modified (with
newld and 0ldId operations) to distinguish them, since Maude objects should
have unique identifiers in the same Maude configuration.

Modifications to object identifiers are performed in such a way that it would
be possible to “undo” them to get the original identifiers (with originalld op-
eration, defined in next section).
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ceq modelDiff( < 01 : C1 | ATTS1 > CONF1,
< 02 : C2 | ATTS2 > CONF2, MATCHM)
= < newModId(01) : ModifiedElement |
element : newId(01), oldElement : 01dId(02) >
< newId(01) : C1 | attsDiff(ATTS1,ATTS2) >
< 01dId(02) : C2 | attsDiff (ATTS2,ATTS1) >
modelDiff (CONF1,CONF2,MATCHM)
if match(01, 02, MATCHM) /\ (not(ATTS1 == ATTS2) or not(Cl == C2))

Note that every element modification is treated in the same way, i.e., meta-
class ModifiedElement is used for all kinds of feasible modifications: from a
modification in a String attribute value to a change in the order of elements in
collections. This decision was made for the sake of simplicity although, of course,
the Difference Metamodel could be easily extended to explicitly distinguish be-
tween different kinds of element modifications, if required.

In the third and fourth cases, one element in one of the models does not
match any other element of the other model. If the object only appears in the
minuend model, the element has been added; otherwise (i.e., the object only
appears in the subtrahend model) the element has been deleted. Thus, we just
have to create an object AddedElement (or DeletedElement, respectively), with
a reference to the element in question which will be also added to the difference
model (modifying its identifier as previously described):

eq modelDiff( < 01 : C1 | ATTS1 > CONF1, CONF2, MATCHM )
= < newAddId(01) : AddedElement | element : newId(01) >
< newId(01) : C1 | ATTS1 >
modelDiff (CONF1, CONF2, MATCHM) [owise]

eq modelDiff( CONF1, < 02 : C2 | ATTS2 > CONF2, MATCHM )
= < newDelId(02) : DeletedElement | element : 01dId(02) >
< 01d1d4(02) : C2 | ATTS2 >
modelDiff (CONF1, CONF2, MATCHM) [owise]

Finally, the reader should notice the existence of a final fifth case in case both
the minuend and subtrahend models are empty. The result of the modelDiff
operation will be an empty difference model, as expected:

eq modelDiff( none, none, MATCHMODEL ) = none .

4.3 An Example

For illustration purposes, let us introduce a simple example to show how the
model difference works, and the results that it obtains. Given the state machine
model presented in Section [B] suppose that we add a transition in the opposite
direction to the existing one, i.e., a new transition Tr2 from state St2 to state
St1. As a result, the following model is obtained:
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< ’SM : StateMachine | initialState : ’ST1 ,
containedStates : (’ST1, ’ST2) >
< ’ST1 : State | name : "St1", stateMachine : ’SM,
outgoing : ’TR, incoming : ’TR2 >
< ’ST2 : State | name : "St2", stateMachine : ’SM,
outgoing : ’TR2, incoming : ’TR2 >
< °TR : Transition | name : "Tr", src : ’ST1 , target : ’ST2 >
< ’TR2 : Transition | name : "Tr2", src : ’ST2 , target : ’ST1 >

Note that states St1 and St2 are also modified since they have a reference to
the incoming and outgoing transitions.

Now, if we take the modified model as the minuend model, and the initial
model as the subtrahend model, the result of applying the difference operation
is a model (shown below) that conforms to the Difference Metamodel:

< ’ST1@MOD : ModifiedElement | element : ’ST1@NEW,
oldElement : ’ST1@O0LD>
< ’ST1@NEW : State | incoming : ’TR2 >
’ST1Q@0LD : State | incoming : empty >
’ST2@MOD : ModifiedElement | element : ’ST2@NEW,
oldElement : ’ST2@0LD >
’ST2@NEW : State | outgoing : ’TR2 >
’ST2@0LD : State | outgoing : empty >
>TR2@ADD : AddedElement | element : ’>TR2@NEW >
>TR2@NEW : Transition | name : "Tr2", src : ’ST2, target : ’ST1 >

A A

AN AN A

As we can see, both added transition and states reference modifications are
represented in the difference model. Elements were matched as expected, since
their name and class were not modified (with w,, = 0.25).

An interesting property of this difference operation is that it can be applied to
minuend and subtrahend models conforming to different metamodels. Thus, in
some situations in which models and metamodels are evolving at the same time,
models can be compared as well. Every element (and attribute value) is handled
in the same way, no matter whether its metaclass (or any of its meta-attributes)
is only defined in the metamodel of one of the (subtrahend or minuend) models.

5 Further Operations

Model difference is probably the main operation for dealing with model evolution
and for handling model versions, but it is not the only one required to achieve
such processes. There are other related operations that need to be considered
too, such as those that do and undo the changes, compose several differences,
etc. For instance, operations do and undo will allow us to obtain the minuend
model from the subtrahend model, and viceversa, respectively.

In fact, one of the current limitations of other proposals that implement model
comparison and difference (e.g. [7]) is that their results cannot be effectively com-
posed, and that these additional operations are hard to define. In our approach,
given the way in which the differences have been represented (as models), and
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the modelDiff operation has been specified (as an operation on models), they
become natural and easy to define.

5.1 The “do” Operation

Given a model M conforming to an arbitrary metamodel M M and a difference
model My (conforming to the Difference Metamodel), the result of applying
operation do to them is another model M,, so that: do(Ms,My) = M,, and
modelDiff (M,,, M) = M,.

Operation do applies to a model all the changes specified in a difference
model. Basically, it adds to the model all elements referred to by AddedElements
of the difference model; deletes from the model all elements referred to by
DeletedElements of the difference model; and modifies those elements of the
model which are referred to by ModifiedElements.

In Maude, this operation can be specified in terms of three equations (de-
scribed below) that correspond, respectively, to the addition, deletion and mod-
ification of elements. A fourth equation is also included to deal with the empty
difference:

vars MODEL CONF : Configuration .

vars 0 02 OLDO NEWO : 0id .

vars C NEWC OLDC : Cid .

vars ATTS OLDATTS NEWATTS : AttributeSet .

op do : Configuration DiffModel -> Configuration .
eq do(MODEL, < 0 : AddedElement | element : NEWO >
< NEWO : NEWC | NEWATTS > CONF)
= < originalId(NEWO) : NEWC | NEWATTS > do(MODEL, CONF)
ceq do(< 0 : C | ATTS > MODEL,
< 02 : DeletedElement | element : OLDO >
< OLDO : OLDC | OLDATTS > CONF)
= do(MODEL, CONF)
if 0 = originalId(OLDO)
ceq do(< 0 : C | ATTS > MODEL,
< 02 : ModifiedElement | element : NEWO, oldElement : OLDO >
< NEWO : NEWC | NEWATTS > < OLDO : OLDC | OLDATTS > CONF)
= < originalId(NEWO) : NEWC |
(excludingAl1l (ATTS,0LDATTS), NEWATTS)) > do(MODEL, CONF)
if 0 = originalId(OLDO)
eq do(MODEL, none) = MODEL .

Operation originallId recovers the original identifier of the object that was
modified, i.e., reverts the changes done by operations newId or oldId in the
model difference. Operation excludingAll (used in the third equation), deletes
from a Maude attribute set ATTS all attributes that have the same name of a
given attribute in the OLDATTS set. Since OLDATTS just contains the attributes
that have to be deleted or that were modified, what we are doing here is removing
from ATTS these elements just to add the NEWATTS set later. The NEWATTS set
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contains all the attributes to be added, and the new values of the modified
attributes, so that the elements are properly built.

Note that a matching between both models (M, and My) is not needed,
because operation do is supposed to be applied to the original model of the
difference, and original object identifiers can be recovered from the difference
model.

The resulting model M,, will usually conform to the same metamodel M M
of My, although since model difference can be applied to models conforming to
different metamodels, in general we can just affirm that the resulting model M,,
will conform to a metamodel which is a subtype [I] of the metamodel MM of
the original subtrahend M,,.

5.2 The “undo” Operation

Given a model M, conforming to a metamodel MM and a difference model
M, (conforming to the Difference Metamodel), the result of applying opera-
tion undo to them is another model M,, so that: undo(M,,,My) = M, and
modelDiff (M,,, Ms) = M. As well as in operation do, the resulting model
M will usually conform to the same metamodel MM of M, (if this was true
when the difference was done).

This operation reverts all the changes specified in a difference model. Basically,
it adds to the model all elements referred to by DeletedElements of the differ-
ence model; deletes from the model all elements referred to by AddedElements
of the difference model; and modifies those elements of the model that are re-
ferred to by ModifiedElements (but in the opposite way of operation do). Undo
equations are not shown here because they are analogous to the do equations.

Operation undo can be considered as the inverse operation of do. Thus,
undo (do(M,, Myg), My) = M,, and do(undo(M,,, My), Myg) = M,,. This
is always true because of the definition of both operations: do(M;, My) = M,,,
and undo(M,,,, My) = M.

5.3 Sequential Composition of Differences

Another important operation provides the sequential composition of differences.
In general, each difference model represents the changes in a model from one
version to the next, i.e., a delta (A). The diffComp operation specifies the com-
position of deltas, so that individual deltas can be combined into a single one.

This operation is very useful, for instance, to “optimize” the process of ap-
plying successive modifications to the same model, which might introduce com-
plementary changes. For example, if one element is added in one delta and then
deleted in another, the composed delta does not need to store both changes.
In this way, this operation not only composes delta but also eliminates unnec-
essary changes and provides more compact model differences, hence improving
efficiency.

The following Maude equations are a fragment of the diffComp operation
specification. The first equation corresponds to the composition of an addition
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and a deletion of the same element. In this case, as mentioned before, there
will be no evidence of the element in the resulting difference model. The second
equation corresponds to the composition of an addition and a modification of
the same element. Thus, both an AddedElement that refers to the element with
its attributes properly modified, and the element itself, will be included in the
resulting difference model.

ceq diffComp(< 01 : AddedElement | element : NEWO >
< NEWO : NEWC | NEWATTS > CONF1,
< 02 : DeletedElement | element : OLDO >
< OLDO : OLDC | OLDATTS > CONF2)
= diffComp (CONF1, CONF2)
if originalId(OLD0) == originalId(NEWD)

ceq diffComp(< 01 : AddedElement | element : NEWO >
< NEWO : NEWC | NEWATTS > CONF1,
< 02 : ModifiedElement | element : NEW02,
oldElement : OLDO >
< OLDO : OLDC | OLDATTS >
< NEWO2 : NEWC2 | NEWATTS2 > CONF2)
= < 01 : AddedElement | element : NEWO2 >
< NEWO2 : NEWC2 | excludingAll(NEWATTS, NEWATTS2), NEWATTS2 >
diffComp(CONF1, CONF2)
if originalId(NEWO) == originalld(OLDO)

eq diffComp(CONF1, CONF2) = CONF1 CONF2 [owise]

When no correspondences are found between the two difference models, i.e.,
there are no several DiffElement that refers to the same element, all the remain-
ing elements (DiffElements) from both models are just copied (as specified by
the last equation).

5.4 Tool Support

We have developed an Eclipse plug-in, called Maudeling [I1], which is available
for download [19]. This plug-in provides the implementation of all the difference
operations specified here.

One of the main advantages of Maude is the possibility of using its execution
environment, able to provide efficient implementations of the specifications. In
fact, Maude’s execution capabilities are comparable in performance and resource
consumption to most commercial programming languages’ environments. Thus
we can efficiently execute the specifications of all the model operations described
above.

Internally, ATL is used to automatically transform the Ecore models into
their corresponding Maude representations, and then execute the operations in
the Maude environment, so that the user does not need to deal with the Maude
encoding of models and metamodels.
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6 Related Work

There are several works that address the problems of comparing models and
calculating their differences. Firstly, we have the works that describe how to
compute the difference of models that conform to one specific metamodel, usu-
ally UML [5/9/10]. Their specificity and strong dependence on the elements and
structure of the given metamodel hinders their generalization as metamodel-
independent approaches that can be used with models that conform to arbitrary
metamodels.

Secondly, there are several techniques that allow to solve this problem using
edit scripts, which are based on representing the modifications as sequences of
atomic actions specifying how the initial model is procedurally modified. These
approaches are more general and powerful, and have been traditionally used for
calculating and representing differences in several contexts. However, edit scripts
are intrinsically not declarative, lengthy and very fine-grained, suitable for inter-
nal representations but quite ineffective to be adopted for documenting changes in
MDSD environments, and difficult to compose. Furthermore, the results of their
calculations are not expressed as a model conforming to a specific metamodel, and
therefore can not be processed by standard modeling platforms (cf. [20]).

Other works, such as [20], [I7] and [16], are closer to ours. In [20], a metamodel-
independent approach to difference representation is presented, but with the
particularity that the Difference Metamodel is not fixed, but created in each
case as an extension of the operands’ metamodel. This approach is agnostic of
calculation method, so it does not introduce any model difference operation,
and also requires a complex model transformation process to create the specific
Difference Metamodel and to calculate the differences. Matching is based on
name comparison; the proposal assumes that this specific attribute always exists
and is called name. This may hinder its application in some contexts, such as
for instance those in which metamodels are defined in languages different to
English.

The work described in [I7] introduces an algorithm for calculating and repre-
senting model differences in a metamodel-independent manner, but the result is
not compact (it contains more information than required) and it is more oriented
towards graphically representing and visualizing the differences.

Thirdly, EMFCompare [I6] is a new interesting approach that uses complex
and sophisticated algorithms to compute the structural matching between model
elements. However, this proposal makes heavy use of the hierarchical tree for
matching the elements, restricting the comparisons to elements in the same level.
As discussed in Section 4.2 this restriction may not be effective in some cases,
including those in which the changes affect the tree structure (something com-
mon in several model refactoring operations). Furthermore, difference models are
not self-contained in EMFCompare, and therefore the minuend and subtrahend
models are required in order to operate with the differences.
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Finally, none of these approaches currently provide good support for compos-
ing the deltas and implementing further operations on them.

7 Conclusions

This paper discusses the problem of calculating differences between models con-
forming to arbitrary metamodels. Differences are represented as models that
conform to the Difference Metamodel. In this way, the proposal has been de-
vised to comply to the “everything is a model” principle.

The Difference Metamodel, and difference and related operations (do, undo
and composition) have been specified in Maude and integrated in our Eclipse-
developed environment Maudeling [2]. These operations can be applied to models
not initially specified in Maude since ATL transformations have been defined
from other kinds of representations, such as KM3 or Ecore.

There are several lines of research in which we are currently engaged, or that
we plan to address in the near future.

Firstly, we are working on reverse transformations, i.e., transformations from
Maude to Ecore model specifications, in order to make Maude completely trans-
parent to the user and allow other tools to use the results produced by Maude.

Secondly, future work will address the problem of conflict detection and res-
olution in case of concurrent modification of models in distributed collaborative
environments, in which parallel composition of differences can be applied to a
model (or to parts of it).

Thirdly, we are working on improving the matching algorithm, with more
complex heuristics and more customizable parameters, allowing users to assign
weights to particular structural features depending on the specificities of their
metamodels. In this sense, many of the powerful matching algorithms being
developed within the EMFCompare project can also be easily adopted by our
proposal, given the powerful specification possibilities of Maude. Counting on
a formal supporting framework may bring along interesting benefits, such as
proving the correctness of the algorithms, or reasoning about them, something
at which Maude is particularly strong.

Finally, we are also working on making all our model operations available via
Web services. In this way, users can simply send the appropriate SOAP messages
with the (URLSs of the) Ecore models to be compared, and get the resulting Ecore
model with the difference. These difference models can be provided as operands
of do, undo and modelDiff operations, also supported as Web Services. Our goal
is to contribute to a Web-based distributed Model Service Bus, supporting a set
of common services and operations on models that can be used for achieving
distributed mega-programming in an effective way.
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