Skip to main content

Using the Self-Organizing Map (SOM) Algorithm, as a Prototype E-Content Retrieval Tool

  • Conference paper
Computational Science and Its Applications – ICCSA 2008 (ICCSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5073))

Included in the following conference series:

  • 1647 Accesses

Abstract

SOM O.D.I.S.S.E.A.S is an intelligent searching tool using the Self-Organizing Map (SOM) algorithm, as a prototype e-content retrieval tool. The proposed searching tool has the ability to adjust and scale into any e-learning system that requires concept-based queries. In the proposed methodology, maps are used for the automatic replacement of the unstructured, the half structured and the multidimensional data of text, in a way that similar entries in the map are represented near between them. The performance and the functionality of the document organization, and the retrieval tool employing the SOM architecture, are also presented. Furthermore, experiments were performed to test the time performance of a learning algorithm used for the direct creation of teams of terms and texts enabling efficient searching and retrieval of the documents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Drigas, A., Vrettaros, J., Kouremenos, S.: Open Distance Interactive System for Educational Applications O.D.I.S.S.E.A.S. In: Proceedings of the Technology and learning in Higher Education Conference, Samos (2001)

    Google Scholar 

  2. Honkela, J., Lagus, K., Kaski, S.: Selforganizing maps of large document collections. In: Deboeck, G., Kohonen, T. (eds.) Visual Explorations in Finance with self-organizing Maps, pp. 168–178. Springer, London (1998)

    Google Scholar 

  3. Lagus, K., Kaski, S.: Keyword selection method for characterizing text document maps. In: Proceedings of ICANN 1999, 9th international Conference on Artificial Neural Networks, vol. 1, pp. 371–376. IEE, London (1999)

    Chapter  Google Scholar 

  4. Kohonen, T., Kaski, S., Lagus, K., Honkela, J., Paatero, V., Saarela, A.: Self organization of a massive text document collection. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 171–182. Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  5. Lagus, K.: Text retrieval using self-organized document maps. Technical Report A61. Helsinki University of Technology, Laboratory of computer and information science (2000)

    Google Scholar 

  6. Kohonen, T.: Self-organization and Associative Memory, 3rd edn. Spriger, Heidelberg (1989)

    Google Scholar 

  7. Kohonen, T.: Self-Organization Maps. Springer, Heidelberg (1995)

    Google Scholar 

  8. Salton, A.: Automatic Text processing. Addition-Wesley Publishing Company, Inc., Reading (1995)

    Google Scholar 

  9. Kohonen, T.: Self-organization of very large documents collections. State of the art. In: Niklasson, L., Boden, M., Ziemke, T. (eds.) Proceedings of ICANN 1998, 8th international Conference on Artificial Neural Networks, vol. 1, pp. 65–74. IEE, London (1998)

    Google Scholar 

  10. Deerwester, G., Dumais, T., Furnas, W., Landauer, K., Harshman, R.: Indexing By Latent Semantic Analysis. Journal of the American Society of Information Science (1990)

    Google Scholar 

  11. Honkela, J., Kaski, S., Kohonen, T., Lagus, K.: Self-organizing maps of very large document collections: Justification for the WEBSOM method. In: Balderjahn, I., Mathar, R., Schader, M. (eds.) Classification, Data Analysis, and Data Highways, pp. 245–252. Springer, Berlin (1998)

    Google Scholar 

  12. Perfetti, R., Costantini, G.: Associative memories on BBS neural networks: a hardware-oriented learning algorithm. In: WSEAS NNA-FSFS-EC, pp. 109–454 (2003)

    Google Scholar 

  13. Triantafyllou, I., Carayannis, G.: Architectures and Techniques for Monolingual and Multilingual Information Retrieval Systems in a SOM Framework. In: WSEAS NNA-FSFS-EC, pp. 205–454 (2003)

    Google Scholar 

  14. Dix, A., Finlay, J., Abowd, G., Beale, R.: Human Computer Interaction, 3rd edn. Prentice Hall (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Beniamino Murgante Antonio Laganà David Taniar Youngsong Mun Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Drigas, A.S., Vrettaros, J. (2008). Using the Self-Organizing Map (SOM) Algorithm, as a Prototype E-Content Retrieval Tool. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69848-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69848-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69840-1

  • Online ISBN: 978-3-540-69848-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics