Skip to main content

Generating Fuzzy Equivalence Classes on RSS News Articles for Retrieving Correlated Information

  • Conference paper
Computational Science and Its Applications – ICCSA 2008 (ICCSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5073))

Included in the following conference series:

Abstract

Tens of thousands of news articles are posted on-line each day, covering topics from politics to science to current events. In order to better cope with this overwhelming volume of information, RSS (news) feeds are used to categorize newly posted articles. Nonetheless, most RSS users must filter through many articles within the same or different RSS feeds in order to locate articles pertaining to their particular interests. Due to the large number of news articles in individual RSS feeds, there is a need for further organizing articles to aid users in locating non-redundant, informative, and related articles of interest quickly. In this paper, we present a novel approach which uses the word-correlation factors in a fuzzy set information retrieval model to (i) filter out redundant news articles from RSS feeds, (ii) shed less-informative articles from the non-redundant ones, and (iii) cluster the remaining informative articles according to the fuzzy equivalence classes generated on the news articles. Our clustering approach requires little overhead or computational costs, and experimental results have shown that it outperforms other existing well-known clustering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Broder, A., Glassman, S., Manasse, M., Zweig, G.: Syntactic Clustering of the Web. Computer Networks and ISDN Systems 29, 8–13, 1157–1166 (1997)

    Article  Google Scholar 

  2. Bun, K., Ishizuka, M.: Topic Extraction from News Archive Using TF*IDF Algorithm. In: Intl. Conf. on Web Information Systems Engineering (WISE), pp. 73–82. Springer (2002)

    Google Scholar 

  3. Cheng, D., Kannan, R., Vempala, S., Wang, G.: A Divide-and-Merge Methodology for Clustering. ACM TODS(31) 4, 1499–1525 (2006)

    Article  Google Scholar 

  4. Khmelev, D., Teahan, W.: A Repetition-Based Measure for Verification of Text Collections and for Text Categorization. In: 26th Intl. ACM SIGIR Conf., pp. 104–110. ACM, New York (2003)

    Google Scholar 

  5. Klir, G.K., St. Clair, U., Yuan, B.: Fuzzy Set Theory, Foundations and Applications. Prentice Hall, New Jersey (1997)

    MATH  Google Scholar 

  6. Li, X., Yan, J., Deng, Z., Ji, L., Fan, W., Zhang, B., Chen, Z.: A Novel Clustering-Based RSS Aggregator. In: Intl. Conf. on World Wide Web, pp. 1309–1310. ACM, New York (2007)

    Chapter  Google Scholar 

  7. Li, Y., Chung, S.: Document Clustering Based on Frequent Word Sequences. In: ACM Conf. on Information and Knowledge Management (CIKM), pp. 293–294. ACM, New York (2005)

    Chapter  Google Scholar 

  8. Luger, G.: Artificial Intelligence, Structures and Strategies for Complex Problem Solving, 5th edn. Addison Wesley, San Francisco (2005)

    Google Scholar 

  9. Nallapati, R., Feng, A., Peng, F., Allan, J.: Event Threading within News Topics. In: ACM Conf. on Information and Knowledge Management (CIKM), pp. 446–453. ACM, New York (2004)

    Google Scholar 

  10. Ordonez, C.: Clustering Binary Data Streams with K-Means. In: ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, pp. 10–17. ACM, New York (2003)

    Google Scholar 

  11. Sahoo, N., Callan, J., Krishnan, R., Duncan, G., Padman, R.: Incremental Hierarchical Clustering of Text Documents. In: ACM CIKM, pp. 357–366. ACM, New York (2006)

    Google Scholar 

  12. Wang, Y., Kitsuregawa, M.: Evaluating Contents-Link Coupled Web Page Clustering for Web Search Results. In: ACM CIKM, pp. 499–506. ACM, New York (2002)

    Google Scholar 

  13. Xu, W., Gong, Y.: News Article Clustering by Concept Factorization. In: 27th Intl. ACM SIGIR Conf, pp. 202–209. ACM, New York (2004)

    Google Scholar 

  14. Xu, W., Liu, X., Gong, Y.: News Article Clustering Based on Non-Negative Matrix Factorization. In: 26th Intl. ACM SIGIR Conf., pp. 267–273. ACM, New York (2003)

    Google Scholar 

  15. Yang, H., Callan, J.: Near-Duplicate Detection by Instance-Level Constrained Clustering. In: 29th Intl. ACM SIGIR Conf., pp. 421–428. ACM, New York (2006)

    Chapter  Google Scholar 

  16. Yang, Y., Pierce, T., Carbonell, J.: A Study on Retrospective and On-Line Event Detection. In: 21th Intl. ACM SIGIR Conf., pp. 28–36. ACM, New York (1998)

    Google Scholar 

  17. Zadeh, L.: Similarity Relations and Fuzzy Orderings. Info. Sci(3), 177–200 (1970)

    Google Scholar 

  18. Zimmermann, H.: Fuzzy Set Theory and Its Applications. Kluwer Academic, Dordrecht (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Beniamino Murgante Antonio Laganà David Taniar Youngsong Mun Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gustafson, N., Pera, M.S., Ng, YK. (2008). Generating Fuzzy Equivalence Classes on RSS News Articles for Retrieving Correlated Information. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69848-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69848-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69840-1

  • Online ISBN: 978-3-540-69848-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics