Skip to main content

Collocation–Based Two Step Runge–Kutta Methods for Ordinary Differential Equations

  • Conference paper
Computational Science and Its Applications – ICCSA 2008 (ICCSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5073))

Included in the following conference series:

Abstract

We introduce a general family of collocation based two–step Runge–Kutta methods for the numerical integration of Ordinary Differential Equations depending on the stage values at two consecutive step points. We describe two constructive techniques and analyze the properties of the resulting methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Butcher, J.C.: Numerical methods for Ordinary Differential Equations. Wiley, Chichester (2003)

    MATH  Google Scholar 

  2. D’Ambrosio, R., Ferro, M., Jackiewicz, Z., Paternoster, B.: Almost two-step collocation methods for Ordinary Differential Equations (in preparation)

    Google Scholar 

  3. Guillou, A., Soulé, F.L.: La résolution numérique des problèmes differentiels aux conditions par des méthodes de collocation. RAIRO Anal. Numér. Ser. Rouge R-3, 17–44 (1969)

    Google Scholar 

  4. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I – Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (2000)

    Google Scholar 

  5. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II – Stiff and Differential–Algebraic Problems. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (2002)

    Google Scholar 

  6. Jackiewicz, Z.: General linear methods (in preparation)

    Google Scholar 

  7. Jackiewicz, Z., Tracogna, S.: A general class of two–step Runge–Kutta methods for ordinary differential equations. SIAM J. Numer. Anal. 32(5), 1390–1427 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kramarz, L.: Stability of collocation methods for the numerical solution of y = f(t,y). BIT 20, 215–222 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lambert, J.D.: Numerical methods for ordinary differential systems: The initial value problem. Wiley, Chichester (1991)

    MATH  Google Scholar 

  10. Lie, I., Norsett, S.P.: Superconvergence for Multistep Collocation. Mathematics of Computation 52(185), 65–79 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Martucci, S., Paternoster, B.: Vandermonde–type matrices in two step collocation methods for special second order Ordinary Differential Equations. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 418–425. Springer, Heidelberg (2004)

    Google Scholar 

  12. Paternoster, B.: General Two-Step Runge-Kutta methods based on algebraic and trigonometric polynomials. Int. J. Appl. Math. 6(4), 347–362 (2001)

    MATH  MathSciNet  Google Scholar 

  13. Paternoster, B.: Two step Runge-Kutta-Nyström methods for y = f(x,y) and P–stability. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS 2002. LNCS, vol. 2331, pp. 459–466. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numerica, 437–483 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Beniamino Murgante Antonio Laganà David Taniar Youngsong Mun Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D’Ambrosio, R., Ferro, M., Paternoster, B. (2008). Collocation–Based Two Step Runge–Kutta Methods for Ordinary Differential Equations. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69848-7_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69848-7_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69840-1

  • Online ISBN: 978-3-540-69848-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics