Abstract
We introduce a general family of collocation based two–step Runge–Kutta methods for the numerical integration of Ordinary Differential Equations depending on the stage values at two consecutive step points. We describe two constructive techniques and analyze the properties of the resulting methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Butcher, J.C.: Numerical methods for Ordinary Differential Equations. Wiley, Chichester (2003)
D’Ambrosio, R., Ferro, M., Jackiewicz, Z., Paternoster, B.: Almost two-step collocation methods for Ordinary Differential Equations (in preparation)
Guillou, A., Soulé, F.L.: La résolution numérique des problèmes differentiels aux conditions par des méthodes de collocation. RAIRO Anal. Numér. Ser. Rouge R-3, 17–44 (1969)
Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I – Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (2000)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II – Stiff and Differential–Algebraic Problems. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (2002)
Jackiewicz, Z.: General linear methods (in preparation)
Jackiewicz, Z., Tracogna, S.: A general class of two–step Runge–Kutta methods for ordinary differential equations. SIAM J. Numer. Anal. 32(5), 1390–1427 (1995)
Kramarz, L.: Stability of collocation methods for the numerical solution of y ″= f(t,y). BIT 20, 215–222 (1980)
Lambert, J.D.: Numerical methods for ordinary differential systems: The initial value problem. Wiley, Chichester (1991)
Lie, I., Norsett, S.P.: Superconvergence for Multistep Collocation. Mathematics of Computation 52(185), 65–79 (1989)
Martucci, S., Paternoster, B.: Vandermonde–type matrices in two step collocation methods for special second order Ordinary Differential Equations. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 418–425. Springer, Heidelberg (2004)
Paternoster, B.: General Two-Step Runge-Kutta methods based on algebraic and trigonometric polynomials. Int. J. Appl. Math. 6(4), 347–362 (2001)
Paternoster, B.: Two step Runge-Kutta-Nyström methods for y ″= f(x,y) and P–stability. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS 2002. LNCS, vol. 2331, pp. 459–466. Springer, Heidelberg (2002)
Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numerica, 437–483 (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
D’Ambrosio, R., Ferro, M., Paternoster, B. (2008). Collocation–Based Two Step Runge–Kutta Methods for Ordinary Differential Equations. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69848-7_59
Download citation
DOI: https://doi.org/10.1007/978-3-540-69848-7_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69840-1
Online ISBN: 978-3-540-69848-7
eBook Packages: Computer ScienceComputer Science (R0)